skrf.media.distributedCircuit.DistributedCircuit¶

class
skrf.media.distributedCircuit.
DistributedCircuit
(frequency=None, z0=None, C=9e11, L=2.8e07, R=0, G=0, *args, **kwargs)[source]¶ A transmission line mode defined in terms of distributed impedance and admittance values.
Parameters:  frequency (
Frequency
object) – frequency band of the media  z0 (number, arraylike, or None) – the port impedance for media. Only needed if its different from the characterisitc impedance of the transmission line. if z0 is None then will default to Z0
 C (number, or arraylike) – distributed capacitance, in F/m
 L (number, or arraylike) – distributed inductance, in H/m
 R (number, or arraylike) – distributed resistance, in Ohm/m
 G (number, or arraylike) – distributed conductance, in S/m
Notes
if C,I,R,G are vectors they should be the same length
DistributedCircuit
is Media object representing a transmission line mode defined in terms of distributed impedance and admittance values.A Distributed Circuit may be defined in terms of the following attributes,
Quantity Symbol Property Distributed Capacitance \(C^{'}\) C
Distributed Inductance \(L^{'}\) L
Distributed Resistance \(R^{'}\) R
Distributed Conductance \(G^{'}\) G
The following quantities may be calculated, which are functions of angular frequency (\(\omega\)):
Quantity Symbol Property Distributed Impedance \(Z^{'} = R^{'} + j \omega L^{'}\) Z
Distributed Admittance \(Y^{'} = G^{'} + j \omega C^{'}\) Y
The properties which define their wave behavior:
Quantity Symbol Method Characteristic Impedance \(Z_0 = \sqrt{ \frac{Z^{'}}{Y^{'}}}\) Z0()
Propagation Constant \(\gamma = \sqrt{ Z^{'} Y^{'}}\) gamma()
Given the following definitions, the components of propagation constant are interpreted as follows:
\[ \begin{align}\begin{aligned}+\Re e\{\gamma\} = \text{attenuation}\\\Im m\{\gamma\} = \text{forward propagation}\end{aligned}\end{align} \]See also
 frequency (
Attributes
Y 
Distributed Admittance, \(Y^{'}\) 
Z 
Distributed Impedance, \(Z^{'}\) 
Z0 
Characteristic Impedance, \(Z0\) 
alpha 
real (attenuation) component of gamma 
beta 
imaginary (propagating) component of gamma 
gamma 
Propagation Constant, \(\gamma\) 
npoints 

v_g 
Complex group velocity (in m/s) 
v_p 
Complex phase velocity (in m/s) 
z0 
Methods
__init__ 
Initialize self. 
attenuator 
Ideal matched attenuator of a given length 
capacitor 
Capacitor 
copy 

delay_load 
Delayed load 
delay_open 
Delayed open transmission line 
delay_short 
Delayed Short 
electrical_length 
calculates the electrical length for a given distance 
extract_distance 
Determines physical distance from a transmission or reflection ntwk 
from_csv 

from_media 
Initializes a DistributedCircuit from an existing :class:’~skrf. 
get_array_of 

impedance_mismatch 
Twoport network for an impedance mismatch 
inductor 
Inductor 
isolator 
twoport isolator 
line 
Transmission line of a given length and impedance 
load 
Load of given reflection coefficient. 
lossless_mismatch 
Lossless, symmetric mismatch defined by its return loss 
match 
Perfect matched load (\(\Gamma_0 = 0\)). 
mode 
create another mode in this medium 
open 
Open (\(\Gamma_0 = 1\)) 
plot 

random 
Complex random network. 
resistor 
Resistor 
short 
Short (\(\Gamma_0 = 1\)) 
shunt 
Shunts a Network . 
shunt_capacitor 
Shunted capacitor 
shunt_delay_load 
Shunted delayed load 
shunt_delay_open 
Shunted delayed open 
shunt_delay_short 
Shunted delayed short 
shunt_inductor 
Shunted inductor 
splitter 
Ideal, lossless nway splitter. 
tee 
Ideal, lossless tee. 
theta_2_d 
Converts electrical length to physical distance. 
thru 
Matched transmission line of length 0. 
to_meters 
Translate various units of distance into meters 
white_gaussian_polar 
Complex zeromean gaussian whitenoise network. 
write_csv 
write this media’s frequency,gamma,Z0, and z0 to a csv file. 