Source code for skrf.calibration.deembedding

"""
.. module:: skrf.calibration.deembedding

====================================================
deembedding (:mod:`skrf.calibration.deembedding`)
====================================================

De-embedding is the procedure of removing effects of the
test fixture that is often present in the measurement of a device
or circuit. It is based on a lumped element approximation of the
test fixture which needs removal from the raw data, and its
equivalent circuit often needs to be known a-priori. This is often
required since implementation of calibration methods such as
Thru-Reflect-Line (TRL) becomes too expensive for implementation
in on-wafer measurement environments where space is limited, or
insufficiently accurate as in the case of Short-Open-Load-Thru
(SOLT) calibration where the load cannot be manufactured accurately.
De-embedding is often performed as a second step, after a
SOLT, TRL or similar calibration to the end of a known reference
plane, like the probe-tips in on-wafer measurements.

This module provides objects to implement commonly used de-embedding
method in on-wafer applications.
Each de-embedding method inherits from the common abstract base
class :class:`Deembedding`.

Base Class
----------

.. autosummary::
   :toctree: generated/

   Deembedding

De-embedding Methods
--------------------

.. autosummary::
   :toctree: generated/

   OpenShort
   Open
   ShortOpen
   Short
   SplitPi
   SplitTee
   AdmittanceCancel
   ImpedanceCancel
   IEEEP370
   IEEEP370_SE_NZC_2xThru
   IEEEP370_MM_NZC_2xThru
   IEEEP370_SE_ZC_2xThru
   IEEEP370_MM_ZC_2xThru

"""

from __future__ import annotations

import warnings
from abc import ABC, abstractmethod
from typing import Literal, Sequence

import numpy as np
from numpy import angle, concatenate, conj, exp, flip, imag, ndarray, real, unwrap, zeros
from numpy.fft import fft, fftshift, ifftshift, irfft
from numpy.linalg import norm
from scipy.interpolate import interp1d

from ..frequency import Frequency
from ..network import Network, concat_ports, overlap_multi, subnetwork
from ..util import Axes, Figure, figure, subplots

PortOrderT = Literal["first", "second", "third"]

[docs] class Deembedding(ABC): """ Abstract Base Class for all de-embedding objects. This class implements the common mechanisms for all de-embedding algorithms. Specific calibration algorithms should inherit this class and over-ride the methods: * :func:`Deembedding.deembed` """
[docs] def __init__(self, dummies, name=None, *args, **kwargs): r""" De-embedding Initializer Notes ----- Each de-embedding algorithm may use a different number of dummy networks. We check that each of these dummy networks have matching frequencies to perform de-embedding. It should be known a-priori what the equivalent circuit of the parasitic network looks like. The proper de-embedding method should then be chosen accordingly. Parameters ---------- dummies : list of :class:`~skrf.network.Network` objects Network info of all the dummy structures used in a given de-embedding algorithm. name : string Name of this de-embedding instance, like 'open-short-set1' This is for convenience of identification. \*args, \*\*kwargs : keyword arguments stored in self.args and self.kwargs, which may be used by sub-classes if needed. """ # ensure all the dummy Networks' frequency's are the same for dmyntwk in dummies: if dummies[0].frequency != dmyntwk.frequency: warnings.warn('Dummy Networks dont have matching frequencies, attempting overlap.', RuntimeWarning, stacklevel=2) dummies = overlap_multi(dummies) break self.frequency = dummies[0].frequency self.dummies = dummies self.args = args self.kwargs = kwargs self.name = name
def __str__(self): if self.name is None: name = '' else: name = self.name output = (f'{self.__class__.__name__} Deembedding: {name}, {self.frequency}, ' f'{len(self.dummies)} dummy structures') return output def __repr_(self): return self.__str__()
[docs] @abstractmethod def deembed(self, ntwk): """ Apply de-embedding correction to a Network """ pass
[docs] class OpenShort(Deembedding): """ Remove open parasitics followed by short parasitics. This is a commonly used de-embedding method for on-wafer applications. A deembedding object is created with two dummy measurements: `dummy_open` and `dummy_short`. When :func:`Deembedding.deembed` is applied, Open de-embedding is applied to the short dummy because the measurement results for the short dummy contains parallel parasitics. Then the Y-parameters of the dummy_open are subtracted from the DUT measurement, followed by subtraction of Z-parameters of dummy-short which is previously de-embedded. This method is applicable only when there is a-priori knowledge of the equivalent circuit model of the parasitic network to be de-embedded, where the series parasitics are closest to device under test, followed by the parallel parasitics. For more information, see [1]_ References ------------ .. [1] M. C. A. M. Koolen, J. A. M. Geelen and M. P. J. G. Versleijen, "An improved de-embedding technique for on-wafer high frequency characterization", IEEE 1991 Bipolar Circuits and Technology Meeting, pp. 188-191, Sep. 1991. Example -------- >>> import skrf as rf >>> from skrf.calibration import OpenShort Create network objects for dummy structures and dut >>> op = rf.Network('open_ckt.s2p') >>> sh = rf.Network('short_ckt.s2p') >>> dut = rf.Network('full_ckt.s2p') Create de-embedding object >>> dm = OpenShort(dummy_open = op, dummy_short = sh, name = 'test_openshort') Remove parasitics to get the actual device network >>> realdut = dm.deembed(dut) """
[docs] def __init__(self, dummy_open, dummy_short, name=None, *args, **kwargs): """ Open-Short De-embedding Initializer Parameters ----------- dummy_open : :class:`~skrf.network.Network` object Measurement of the dummy open structure dummy_short : :class:`~skrf.network.Network` object Measurement of the dummy short structure name : string Optional name of de-embedding object args, kwargs: Passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.open = dummy_open.copy() self.short = dummy_short.copy() dummies = [self.open, self.short] Deembedding.__init__(self, dummies, name, *args, **kwargs)
[docs] def deembed(self, ntwk): """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network data of device measurement from which parasitics needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.open.frequency: warnings.warn('Network frequencies dont match dummy frequencies, attempting overlap.', RuntimeWarning, stacklevel=2) caled, op, sh = overlap_multi([ntwk, self.open, self.short]) else: caled, op, sh = ntwk.copy(), self.open, self.short # remove parallel parasitics from the short dummy deembeded_short = sh.copy() deembeded_short.y = sh.y - op.y # remove parallel parasitics from the dut caled.y = caled.y - op.y # remove series parasitics from the dut caled.z = caled.z - deembeded_short.z return caled
[docs] class Open(Deembedding): """ Remove open parasitics only. A deembedding object is created with just one open dummy measurement, `dummy_open`. When :func:`Deembedding.deembed` is applied, the Y-parameters of the open dummy are subtracted from the DUT measurement, This method is applicable only when there is a-priori knowledge of the equivalent circuit model of the parasitic network to be de-embedded, where the series parasitics are assumed to be negligible, but parallel parasitics are unwanted. Example -------- >>> import skrf as rf >>> from skrf.calibration import Open Create network objects for dummy structure and dut >>> op = rf.Network('open_ckt.s2p') >>> dut = rf.Network('full_ckt.s2p') Create de-embedding object >>> dm = Open(dummy_open = op, name = 'test_open') Remove parasitics to get the actual device network >>> realdut = dm.deembed(dut) """
[docs] def __init__(self, dummy_open, name=None, *args, **kwargs): """ Open De-embedding Initializer Parameters ----------- dummy_open : :class:`~skrf.network.Network` object Measurement of the dummy open structure name : string Optional name of de-embedding object args, kwargs: Passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.open = dummy_open.copy() dummies = [self.open] Deembedding.__init__(self, dummies, name, *args, **kwargs)
[docs] def deembed(self, ntwk): """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network data of device measurement from which parasitics needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.open.frequency: warnings.warn('Network frequencies dont match dummy frequencies, attempting overlap.', RuntimeWarning, stacklevel=2) ntwk, op = overlap_multi([ntwk, self.open]) else: op = self.open caled = ntwk.copy() # remove open parasitics caled.y = ntwk.y - op.y return caled
[docs] class ShortOpen(Deembedding): """ Remove short parasitics followed by open parasitics. A deembedding object is created with two dummy measurements: `dummy_open` and `dummy_short`. When :func:`Deembedding.deembed` is applied, short de-embedding is applied to the open dummy because the measurement results for the open dummy contains series parasitics. the Z-parameters of the dummy_short are subtracted from the DUT measurement, followed by subtraction of Y-parameters of dummy_open which is previously de-embedded. This method is applicable only when there is a-priori knowledge of the equivalent circuit model of the parasitic network to be de-embedded, where the parallel parasitics are closest to device under test, followed by the series parasitics. Example -------- >>> import skrf as rf >>> from skrf.calibration import ShortOpen Create network objects for dummy structures and dut >>> op = rf.Network('open_ckt.s2p') >>> sh = rf.Network('short_ckt.s2p') >>> dut = rf.Network('full_ckt.s2p') Create de-embedding object >>> dm = ShortOpen(dummy_short = sh, dummy_open = op, name = 'test_shortopen') Remove parasitics to get the actual device network >>> realdut = dm.deembed(dut) """
[docs] def __init__(self, dummy_short, dummy_open, name=None, *args, **kwargs): """ Short-Open De-embedding Initializer Parameters ----------- dummy_short : :class:`~skrf.network.Network` object Measurement of the dummy short structure dummy_open : :class:`~skrf.network.Network` object Measurement of the dummy open structure name : string Optional name of de-embedding object args, kwargs: Passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.open = dummy_open.copy() self.short = dummy_short.copy() dummies = [self.open, self.short] Deembedding.__init__(self, dummies, name, *args, **kwargs)
[docs] def deembed(self, ntwk): """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network data of device measurement from which parasitics needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.open.frequency: warnings.warn('Network frequencies dont match dummy frequencies, attempting overlap.', RuntimeWarning, stacklevel=2) ntwk, op, sh = overlap_multi([ntwk, self.open, self.short]) else: op, sh = self.open, self.short caled = ntwk.copy() # remove series parasitics from the open dummy deembeded_open = op.copy() deembeded_open.z = op.z - sh.z # remove parallel parasitics from the dut caled.z = ntwk.z - sh.z # remove series parasitics from the dut caled.y = caled.y - deembeded_open.y return caled
[docs] class Short(Deembedding): """ Remove short parasitics only. This is a useful method to remove pad contact resistances from measurement. A deembedding object is created with just one dummy measurement: `dummy_short`. When :func:`Deembedding.deembed` is applied, the Z-parameters of the dummy_short are subtracted from the DUT measurement, This method is applicable only when there is a-priori knowledge of the equivalent circuit model of the parasitic network to be de-embedded, where only series parasitics are to be removed while retaining all others. Example -------- >>> import skrf as rf >>> from skrf.calibration import Short Create network objects for dummy structures and dut >>> sh = rf.Network('short_ckt.s2p') >>> dut = rf.Network('full_ckt.s2p') Create de-embedding object >>> dm = Short(dummy_short = sh, name = 'test_short') Remove parasitics to get the actual device network >>> realdut = dm.deembed(dut) """
[docs] def __init__(self, dummy_short, name=None, *args, **kwargs): """ Short De-embedding Initializer Parameters ----------- dummy_short : :class:`~skrf.network.Network` object Measurement of the dummy short structure name : string Optional name of de-embedding object args, kwargs: Passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.short = dummy_short.copy() dummies = [self.short] Deembedding.__init__(self, dummies, name, *args, **kwargs)
[docs] def deembed(self, ntwk): """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network data of device measurement from which parasitics needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.short.frequency: warnings.warn('Network frequencies dont match dummy frequencies, attempting overlap.', RuntimeWarning, stacklevel=2) ntwk, sh = overlap_multi([ntwk, self.short]) else: sh = self.short caled = ntwk.copy() # remove short parasitics caled.z = ntwk.z - sh.z return caled
[docs] class SplitPi(Deembedding): """ Remove shunt and series parasitics assuming pi-type embedding network. A deembedding object is created with just one thru dummy measurement `dummy_thru`. The thru dummy is, for example, a direct cascaded connection of the left and right test pads. When :func:`Deembedding.deembed` is applied, the shunt admittance and series impedance of the thru dummy are removed. This method is applicable only when there is a-priori knowledge of the equivalent circuit model of the parasitic network to be de-embedded, where the series parasitics are closest to device under test, followed by the shunt parasitics. For more information, see [2]_ References ------------ .. [2] L. Nan, K. Mouthaan, Y.-Z. Xiong, J. Shi, S. C. Rustagi, and B.-L. Ooi, “Experimental Characterization of the Effect of Metal Dummy Fills on Spiral Inductors,” in 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Jun. 2007, pp. 307–310. Example -------- >>> import skrf as rf >>> from skrf.calibration import SplitPi Create network objects for dummy structure and dut >>> th = rf.Network('thru_ckt.s2p') >>> dut = rf.Network('full_ckt.s2p') Create de-embedding object >>> dm = SplitPi(dummy_thru = th, name = 'test_thru') Remove parasitics to get the actual device network >>> realdut = dm.deembed(dut) """
[docs] def __init__(self, dummy_thru, name=None, *args, **kwargs): """ SplitPi De-embedding Initializer Parameters ----------- dummy_thru : :class:`~skrf.network.Network` object Measurement of the dummy thru structure name : string Optional name of de-embedding object args, kwargs: Passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.thru = dummy_thru.copy() dummies = [self.thru] Deembedding.__init__(self, dummies, name, *args, **kwargs)
[docs] def deembed(self, ntwk): """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network data of device measurement from which parasitics needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.thru.frequency: warnings.warn('Network frequencies dont match dummy frequencies, attempting overlap.', RuntimeWarning, stacklevel=2) ntwk, thru = overlap_multi([ntwk, self.thru]) else: thru = self.thru left = thru.copy() left_y = left.y left_y[:,0,0] = (thru.y[:,0,0] - thru.y[:,1,0] + thru.y[:,1,1] - thru.y[:,0,1]) / 2 left_y[:,0,1] = thru.y[:,1,0] + thru.y[:,0,1] left_y[:,1,0] = thru.y[:,1,0] + thru.y[:,0,1] left_y[:,1,1] = - thru.y[:,1,0] - thru.y[:,0,1] left.y = left_y right = left.flipped() caled = left.inv ** ntwk ** right.inv return caled
[docs] class SplitTee(Deembedding): """ Remove series and shunt parasitics assuming tee-type embedding network. A deembedding object is created with just one thru dummy measurement `dummy_thru`. The thru dummy is, for example, a direct cascaded connection of the left and right test pads. When :func:`Deembedding.deembed` is applied, the shunt admittance and series impedance of the thru dummy are removed. This method is applicable only when there is a-priori knowledge of the equivalent circuit model of the parasitic network to be de-embedded, where the shunt parasitics are closest to device under test, followed by the series parasitics. For more information, see [3]_ References ------------ .. [3] M. J. Kobrinsky, S. Chakravarty, D. Jiao, M. C. Harmes, S. List, and M. Mazumder, “Experimental validation of crosstalk simulations for on-chip interconnects using S-parameters,” IEEE Transactions on Advanced Packaging, vol. 28, no. 1, pp. 57–62, Feb. 2005. Example -------- >>> import skrf as rf >>> from skrf.calibration import SplitTee Create network objects for dummy structure and dut >>> th = rf.Network('thru_ckt.s2p') >>> dut = rf.Network('full_ckt.s2p') Create de-embedding object >>> dm = SplitTee(dummy_thru = th, name = 'test_thru') Remove parasitics to get the actual device network >>> realdut = dm.deembed(dut) """
[docs] def __init__(self, dummy_thru, name=None, *args, **kwargs): """ SplitTee De-embedding Initializer Parameters ----------- dummy_thru : :class:`~skrf.network.Network` object Measurement of the dummy thru structure name : string Optional name of de-embedding object args, kwargs: Passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.thru = dummy_thru.copy() dummies = [self.thru] Deembedding.__init__(self, dummies, name, *args, **kwargs)
[docs] def deembed(self, ntwk): """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network data of device measurement from which parasitics needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.thru.frequency: warnings.warn('Network frequencies dont match dummy frequencies, attempting overlap.', RuntimeWarning, stacklevel=2) ntwk, thru = overlap_multi([ntwk, self.thru]) else: thru = self.thru left = thru.copy() left_z = left.z left_z[:,0,0] = (thru.z[:,0,0] + thru.z[:,1,0] + thru.z[:,1,1] + thru.z[:,0,1]) / 2 left_z[:,0,1] = thru.z[:,1,0] + thru.z[:,0,1] left_z[:,1,0] = thru.z[:,1,0] + thru.z[:,0,1] left_z[:,1,1] = thru.z[:,1,0] + thru.z[:,0,1] left.z = left_z right = left.flipped() caled = left.inv ** ntwk ** right.inv return caled
[docs] class AdmittanceCancel(Deembedding): """ Cancel shunt admittance by swapping (a.k.a Mangan's method). A deembedding object is created with just one thru dummy measurement `dummy_thru`. The thru dummy is, for example, a direct cascaded connection of the left and right test pads. When :func:`Deembedding.deembed` is applied, the shunt admittance of the thru dummy are canceled, from the DUT measurement by left-right mirroring operation. This method is applicable to only symmetric (i.e. S11=S22 and S12=S21) 2-port DUTs, but suitable for the characterization of transmission lines at mmW frequencies. For more information, see [4]_ References ------------ .. [4] A. M. Mangan, S. P. Voinigescu, Ming-Ta Yang, and M. Tazlauanu, “De-embedding transmission line measurements for accurate modeling of IC designs,” IEEE Trans. Electron Devices, vol. 53, no. 2, pp. 235–241, Feb. 2006. Example -------- >>> import skrf as rf >>> from skrf.calibration import AdmittanceCancel Create network objects for dummy structure and dut >>> th = rf.Network('thru_ckt.s2p') >>> dut = rf.Network('full_ckt.s2p') Create de-embedding object >>> dm = AdmittanceCancel(dummy_thru = th, name = 'test_thru') Remove parasitics to get the actual device network >>> realdut = dm.deembed(dut) """
[docs] def __init__(self, dummy_thru, name=None, *args, **kwargs): """ AdmittanceCancel De-embedding Initializer Parameters ----------- dummy_thru : :class:`~skrf.network.Network` object Measurement of the dummy thru structure name : string Optional name of de-embedding object args, kwargs: Passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.thru = dummy_thru.copy() dummies = [self.thru] Deembedding.__init__(self, dummies, name, *args, **kwargs)
[docs] def deembed(self, ntwk): """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network data of device measurement from which parasitics needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.thru.frequency: warnings.warn('Network frequencies dont match dummy frequencies, attempting overlap.', RuntimeWarning, stacklevel=2) ntwk, thru = overlap_multi([ntwk, self.thru]) else: thru = self.thru caled = ntwk.copy() h = ntwk ** thru.inv h_ = h.flipped() caled.y = (h.y + h_.y) / 2 return caled
[docs] class ImpedanceCancel(Deembedding): """ Cancel series impedance by swapping. A deembedding object is created with just one thru dummy measurement `dummy_thru`. The thru dummy is, for example, a direct cascaded connection of the left and right test pads. When :func:`Deembedding.deembed` is applied, the series impedance of the thru dummy are canceled, from the DUT measurement by left-right mirroring operation. This method is applicable to only symmetric (i.e. S11=S22 and S12=S21) 2-port DUTs, but suitable for the characterization of transmission lines at mmW frequencies. For more information, see [5]_ References ------------ .. [5] S. Amakawa, K. Katayama, K. Takano, T. Yoshida, and M. Fujishima, “Comparative analysis of on-chip transmission line de-embedding techniques,” in 2015 IEEE International Symposium on Radio-Frequency Integration Technology, Sendai, Japan, Aug. 2015, pp. 91–93. Example -------- >>> import skrf as rf >>> from skrf.calibration import ImpedanceCancel Create network objects for dummy structure and dut >>> th = rf.Network('thru_ckt.s2p') >>> dut = rf.Network('full_ckt.s2p') Create de-embedding object >>> dm = ImpedanceCancel(dummy_thru = th, name = 'test_thru') Remove parasitics to get the actual device network >>> realdut = dm.deembed(dut) """
[docs] def __init__(self, dummy_thru, name=None, *args, **kwargs): """ ImpedanceCancel De-embedding Initializer Parameters ----------- dummy_thru : :class:`~skrf.network.Network` object Measurement of the dummy thru structure name : string Optional name of de-embedding object args, kwargs: Passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.thru = dummy_thru.copy() dummies = [self.thru] Deembedding.__init__(self, dummies, name, *args, **kwargs)
[docs] def deembed(self, ntwk): """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network data of device measurement from which parasitics needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.thru.frequency: warnings.warn('Network frequencies dont match dummy frequencies, attempting overlap.', RuntimeWarning, stacklevel=2) ntwk, thru = overlap_multi([ntwk, self.thru]) else: thru = self.thru caled = ntwk.copy() h = ntwk ** thru.inv h_ = h.flipped() caled.z = (h.z + h_.z) / 2 return caled
[docs] class IEEEP370(Deembedding): """ Abstract Base Class for all IEEEP370 de-embedding class. This class implements the common mechanisms for all IEEEP370 de-embedding algorithms. Specific algorithms should inherit this class and override the methods: * :func:`IEEEP370.deembed` * :func:`IEEEP370.split2xthru` Based on [ElSA20]_, [I3E3701]_, [I3E3702]_, [I3E3703]_, [I3E3704]_, and [I3E3705]_. References ---------- .. [ElSA20] Ellison J, Smith SB, Agili S., "Using a 2x-thru standard to achieve accurate de-embedding of measurements", Microwave Optical Technology Letter, 2020, https://doi.org/10.1002/mop.32098 .. [I3E3701] https://opensource.ieee.org/elec-char/ieee-370/-/blob/master/TG1/IEEEP3702xThru.m, commit 49ddd78cf68ad5a7c0aaa57a73415075b5178aa6 .. [I3E3702] https://opensource.ieee.org/elec-char/ieee-370/-/blob/master/TG1/IEEEP370mmZc2xthru.m commit 49ddd78cf68ad5a7c0aaa57a73415075b5178aa6 .. [I3E3703] https://opensource.ieee.org/elec-char/ieee-370/-/blob/master/TG1/IEEEP370Zc2xThru.m commit 49ddd78cf68ad5a7c0aaa57a73415075b5178aa6 .. [I3E3704] https://opensource.ieee.org/elec-char/ieee-370/-/blob/master/TG1/IEEEP370mmZc2xthru.m commit 49ddd78cf68ad5a7c0aaa57a73415075b5178aa6 .. [I3E3705] https://opensource.ieee.org/elec-char/ieee-370/-/blob/master/TG3/qualityCheckFrequencyDomain.m commit 8b8f3a3b5e41aeb4ab16110bbfb683ec52e70206 """
[docs] def __init__(self, dummies: Sequence[Network], name: str = None, *args, **kwargs) -> None: r""" IEEEP370 de-embedding Initializer. Parameters ---------- dummies : list of :class:`~skrf.network.Network` objects Network info of all the dummy structures used in a given de-embedding algorithm. name : string Name of this de-embedding instance, like 'open-short-set1' This is for convenience of identification. \*args, \*\*kwargs : keyword arguments stored in self.args and self.kwargs, which may be used by sub-classes if needed. """ Deembedding.__init__(self, dummies, name, *args, **kwargs)
[docs] @abstractmethod def deembed(self, ntwk: Network) -> Network: """ Apply de-embedding correction to a Network """ pass
[docs] @abstractmethod def split2xthru(self): """ Determine fixtures models """ pass
[docs] @staticmethod def extrapolate_to_dc(ntwk: Network) -> Network: """ Extrapolate the network to DC using IEEE370 NZC algorithm. This is usefull to compare the fixtures and deembedded networks to the input data in the same conditions used by NZC algorithm. If the network already have a DC point, it will be replaced. Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network to be extrapolated to DC Returns ------- ntwk_dc : :class:`~skrf.network.Network` object Network with DC point """ name = ntwk.name s = ntwk.s f = ntwk.frequency.f port_modes = ntwk.port_modes # check for already existing DC point if(f[0] == 0): warnings.warn( "Existing DC point is replaced by extrapolated value.", RuntimeWarning, stacklevel=2 ) f = f[1:] s = s[1:] # check for bad frequency vector df = f[1] - f[0] tol = 0.1 # allow a tolerance of 0.1 from delta-f to starting f (prevent non-issues from precision) if(np.abs(f[0] - df) > tol): warnings.warn( """Non-uniform frequency vector detected. Consider interpolation.""", RuntimeWarning, stacklevel=2 ) n_ports = ntwk.number_of_ports z0 = ntwk.z0[0] n = len(f) snew = zeros((n + 1, n_ports, n_ports), dtype = complex) snew[1:,:,:] = s for i in range(n_ports): for j in range(n_ports): if i == j: snew[0, i, j] = IEEEP370.DC(s[:, i, j], f) else: snew[0, i, j] = IEEEP370.dc_interp(s[:, i, j], f) f = concatenate(([0], f)) ntwk_dc = Network(frequency = Frequency.from_f(f, 'Hz'), s = snew, z0 = z0, name = name) ntwk_dc.port_modes = port_modes return ntwk_dc
[docs] @staticmethod def dc_interp(s: ndarray, f: ndarray) -> float: """ enforces symmetric upon the first 10 points and interpolates the DC point. """ sp = s[0:9] fp = f[0:9] snp = concatenate((conj(flip(sp)), sp)) fnp = concatenate((-1*flip(fp), fp)) # mhuser : used cubic instead spline (not implemented) snew = interp1d(fnp, snp, axis=0, kind = 'cubic') return real(snew(0))
[docs] @staticmethod def COM_receiver_noise_filter(f: ndarray, fr: float) -> ndarray: """ receiver filter in COM defined by eq 93A-20 As defined in 802.3-2022 - IEEE Standard for Ethernet annex 93A """ fdfr = f / fr # eq 93A-20 return 1 / (1 - 3.414214 * fdfr**2 + fdfr**4 + 1j*2.613126*(fdfr - fdfr**3))
[docs] @staticmethod def makeStep(impulse: ndarray) -> ndarray: """ Make a time-domain step response from an impulse response. """ #mhuser : no need to call step function here, cumsum will be enough and efficient #step = np.convolve(np.ones((len(impulse))), impulse) #return step[0:len(impulse)] return np.cumsum(impulse, axis=0)
[docs] @staticmethod def DC(s: ndarray, f: ndarray, allowedError: float = 1e-12) -> float: """ Advanced reflective DC point extrapolation. """ DCpoint = 0.002 # seed for the algorithm err = 1 # error seed cnt = 0 df = f[1] - f[0] n = len(f) t = np.linspace(-1/df,1/df,n*2+1) ts = np.argmin(np.abs(t - (-3e-9))) Hr = IEEEP370.COM_receiver_noise_filter(f, f[-1]/2) while(err > allowedError): h1 = IEEEP370.makeStep( fftshift(irfft(concatenate(([DCpoint], Hr * s)), axis=0), axes=0)) h2 = IEEEP370.makeStep( fftshift(irfft(concatenate(([DCpoint + 0.001], Hr * s)), axis=0), axes=0)) m = (h2[ts] - h1[ts]) / 0.001 b = h1[ts] - m * DCpoint DCpoint = (0 - b) / m err = np.abs(h1[ts] - 0) cnt += 1 return DCpoint
[docs] @staticmethod def thru(ntwk: Network) -> Network: """ Create a perfect thru Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network from which copy frequency, z0 and other parameters. The S-parameters will be replaced by zero-length matched lossless thru. Returns ------- out : :class:`~skrf.network.Network` object Network of the perfect thru """ out = ntwk.copy() out.s[:, 0, 0] = 0 out.s[:, 1, 0] = 1 out.s[:, 0, 1] = 1 out.s[:, 1, 1] = 0 return out
[docs] @staticmethod def add_dc(ntwk: Network) -> Network: """ Extrapolate a network to DC using interpolation for all S-parameters. Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network to be extrapolated to DC Returns ------- out : :class:`~skrf.network.Network` object Network with DC point """ s = ntwk.s f = ntwk.frequency.f z0 = ntwk.z0[0] n = len(f) snew = zeros((n + 1, 2,2), dtype = complex) snew[1:,:,:] = s snew[0, 0, 0] = IEEEP370.dc_interp(s[:, 0, 0], f) snew[0, 0, 1] = IEEEP370.dc_interp(s[:, 0, 1], f) snew[0, 1, 0] = IEEEP370.dc_interp(s[:, 1, 0], f) snew[0, 1, 1] = IEEEP370.dc_interp(s[:, 1, 1], f) f = concatenate(([0], f)) return Network(frequency = Frequency.from_f(f, 'Hz'), s = snew, z0 = z0)
[docs] @staticmethod def getz(s: ndarray, f: ndarray, z0: float) -> ndarray: """ Compute step response to get the time-domain impedance from S-parameters. The S-parameters are DC extrapolated first. Parameters ---------- s : :array-like 1-Port S-parameters array f : :array-like Frequency array for DC extrapolation z0: :array-like Reference impedance Returns ------- z : :array-like Time-domain impedance step response """ DC11 = IEEEP370.DC(s, f, 1e-10) t112x = irfft(concatenate(([DC11], s))) #get the step response of t112x. Shift is needed for makeStep to #work properly. t112xStep = IEEEP370.makeStep(fftshift(t112x)) #construct the transmission line z = -z0 * (t112xStep + 1) / (t112xStep - 1) z = ifftshift(z) #impedance. Shift again to get the first point first. return z
[docs] @staticmethod def makeTL(zline: float, z0: float, gamma: ndarray, l: float) -> ndarray: """ Compute the S-parameters of a transmission line. Parameters ---------- zline : :number Characteristic impedance z0 : :number Port impedance to renormalize into gamma : :array-like Frequency-dependent propagation constant l : :number Length in the same length unit as gamma Returns ------- TL : :array-like S_Parameters of the transmission line """ # todo: use DefinedGammaZ0 media instead n = len(gamma) TL = np.zeros((n, 2, 2), dtype = complex) TL[:, 0, 0] = (((zline**2 - z0**2) * np.sinh(gamma * l)) / ((zline**2 + z0**2) * np.sinh(gamma * l) + 2 * z0 * zline * np.cosh(gamma * l))) TL[:, 1, 0] = (2 * z0 * zline) / ((zline**2 + z0**2) * np.sinh(gamma * l) + 2 * z0 * zline * np.cosh(gamma * l)) TL[:, 0, 1] = (2 * z0 * zline) / ((zline**2 + z0**2) * np.sinh(gamma * l) + 2 * z0 * zline * np.cosh(gamma * l)) TL[:, 1, 1] = (((zline**2 - z0**2) * np.sinh(gamma * l)) / ((zline**2 + z0**2) * np.sinh(gamma * l) + 2 * z0 * zline * np.cosh(gamma * l))) return TL
[docs] @staticmethod def NRP(ntwk: Network, TD: ndarray = None, port: int = None) -> (Network, ndarray): """ Enforce the Nyquist Rate Point. Force the length of the transmissive network to be an integer multiple of the wavelength at the highest frequency. If required, a proper delay is added to meet this condition. The function can also be used to remove the delay. Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network to be extrapolated to DC TD : :array-like If None, the delay will be computed and added. Else, the delay will be removed (to reset the original length). (default: None) port: :Number Specify to apply NRP only on a single port of the network (default: None) Returns ------- TL : :array-like S_Parameters of the transmission line """ p = ntwk.s f = ntwk.frequency.f n = len(f) X = ntwk.nports fend = f[-1] if TD is None: TD = np.zeros(X) for i in range(X): theta0 = angle(p[-1, i, i]) if theta0 < -np.pi/2: theta = -np.pi - theta0 elif theta0 > np.pi/2: theta = np.pi - theta0 else: theta = -theta0 TD[i] = -theta / (2 * np.pi * fend) pd = np.zeros((n, X, X), dtype = complex) delay = exp(-1j * 2. * np.pi * f * TD[i] / 2.) if i == 0: pd[:, i + X//2, i] = delay pd[:, i, i + X//2] = delay spd = ntwk.copy() spd.s = pd out = spd ** ntwk elif i < X//2: pd[:, i + X//2, i] = delay pd[:, i, i + X//2] = delay spd = ntwk.copy() spd.s = pd out = spd ** out else: pd[:, i - X//2, i] = delay pd[:, i, i - X//2] = delay spd = ntwk.copy() spd.s = pd out = out ** spd else: pd = np.zeros((n, X, X), dtype = complex) if port is not None: i = port delay = exp(1j * 2. * np.pi * f * TD[i] / 2.) if i < X//2: pd[:, i + X//2, i] = delay pd[:, i, i + X//2] = delay spd = ntwk.copy() spd.s = pd out = spd ** ntwk else: pd[:, i - X//2, i] = delay pd[:, i, i - X//2] = delay spd = ntwk.copy() spd.s = pd out = ntwk ** spd else: for i in range(X): delay = exp(1j * 2. * np.pi * f * TD[i] / 2) if i == 0: pd[:, i + X//2, i] = delay pd[:, i, i + X//2] = delay spd = ntwk.copy() spd.s = pd out = spd ** ntwk elif i < X//2: pd[:, i + X//2, i] = delay pd[:, i, i + X//2] = delay spd = ntwk.copy() spd.s = pd out = spd ** out else: pd[:, i - X//2, i] = delay pd[:, i, i - X//2] = delay spd = ntwk.copy() spd.s = pd out = out ** spd return out, TD
[docs] @staticmethod def shiftOnePort(ntwk: Network, N: int, port: int) -> Network: """ Shift one port of the network of N samples in time-domain. This is achieved by cascading a delay. Parameters ---------- ntwk: :class:`~skrf.network.Network` object Network to be shifted N : :number Number of point to shift port: :Number Port to be shifted Returns ------- out : :class:`~skrf.network.Network` object Shifted network """ f = ntwk.frequency.f n = len(f) X = ntwk.nports Omega0 = np.pi/n Omega = np.arange(Omega0, np.pi + Omega0, Omega0) delay = exp(-N * 1j * Omega/2) pd = np.zeros((n, 2, 2), dtype = complex) if port < X//2: pd[:, port, port + X//2] = delay pd[:, port + X//2, port] = delay spd = ntwk.copy() spd.s = pd out = spd ** ntwk else: pd[:, port, port - X//2] = delay pd[:, port - X//2, port] = delay spd = ntwk.copy() spd.s = pd out = ntwk ** spd return out
[docs] @staticmethod def shiftNPoints(ntwk: Network, N: int) -> Network: """ Shift the whole network of N samples in time-domain. This is achieved by cascading a delay. Parameters ---------- ntwk: :class:`~skrf.network.Network` object Network to be shifted N : :number Number of point to shift Returns ------- out : :class:`~skrf.network.Network` object Shifted network """ f = ntwk.frequency.f n = len(f) X = ntwk.nports Omega0 = np.pi/n Omega = np.arange(Omega0, np.pi + Omega0, Omega0) delay = exp(-N * 1j * Omega/2) pd = np.zeros((n, 2, 2), dtype = complex) for port in range(X): if port < X//2: pd[:, port, port + X//2] = delay pd[:, port + X//2, port] = delay spd = ntwk.copy() spd.s = pd p = spd ** ntwk else: pd[:, port, port - X//2] = delay pd[:, port - X//2, port] = delay spd = ntwk.copy() spd.s = pd out = p ** spd return out
[docs] @staticmethod def peelNPointsLossless(ntwk: Network, N: int, z0: float) -> Network: """ Peel N points of the network on both side and return the corresponding error boxes. This is done in a lossless way without determination of the propagation constant gamma. Parameters ---------- ntwk: :class:`~skrf.network.Network` object Network to be peeled N : :number Number of points to peel z0 : :number Reference impedance gamma : :array-like Frequency-dependent propagation constant Returns ------- out : :class:`~skrf.network.Network` object Peeled network out : :class:`~skrf.network.Network` object Error box side port 1 out : :class:`~skrf.network.Network` object Error box side port 2 """ f = ntwk.frequency.f n = len(f) out = ntwk.copy() Omega0 = np.pi/n Omega = np.arange(Omega0, np.pi + Omega0, Omega0) betal = 1j * Omega/2 for i in range(N): p = out.s #calculate impedance zline1 = IEEEP370.getz(p[:, 0, 0], f, z0)[0] zline2 = IEEEP370.getz(p[:, 1, 1], f, z0)[0] #this is the transmission line to be removed TL1 = IEEEP370.makeTL(zline1, z0, betal, 1) TL2 = IEEEP370.makeTL(zline2, z0, betal, 1) sTL1 = ntwk.copy() sTL1.s = TL1 sTL2 = ntwk.copy() sTL2.s = TL2 #remove the errorboxes # no need to flip sTL2 because it is symmetrical out = sTL1.inv ** out ** sTL2.inv #capture the errorboxes from side 1 and 2 if i == 0: eb1 = sTL1.copy() eb2 = sTL2.copy() else: eb1 = eb1 ** sTL1 eb2 = sTL2 ** eb2 return out, eb1, eb2
class IEEEP370_FER: """ IEEE 370 checking for fixture electrical requirements (FER) in the frequency and in the time domains. Based on [IEEE370]_. References ---------- .. [IEEE370] IEEE Standard for Electrical Characterization of Printed Circuit Board and Related Interconnects at Frequencies up to 50 GHz", IEEE 370-2020. """ def plot_constant_limit(self, frequency: Frequency, value: float, ax: Axes, **kwargs) -> None: """ Plot a constant limit line. """ ax.plot([frequency.f[0], frequency.f[-1]], [value, value], **kwargs) def plot_relative_limit(self, x: ndarray, y: ndarray, value: float, ax: Axes, **kwargs) -> None: """ Plot positive and negative relative limit line around a reference trace. """ ax.plot(x, y * (1.0 + value), **kwargs) kwargs.pop('label', None) ax.plot(x, y * (1.0 - value), label = '_nolabel_', **kwargs) def plot_limit_fer1(self, frequency: Frequency, ax: Axes) -> None: """ Plot fer 1 limit lines. """ self.plot_constant_limit(frequency, -10, ax, color = 'g', linestyle = 'dashed', label = 'Minimum A') self.plot_constant_limit(frequency, -15, ax, color = 'r', linestyle = 'dashed', label = 'Minimum B, C') def plot_limit_fer2(self, frequency: Frequency, ax: Axes) -> None: """ Plot fer 2 limit lines. """ self.plot_constant_limit(frequency, -20, ax, color = 'g', linestyle = 'dashed', label = 'Maximum A') self.plot_constant_limit(frequency, -10, ax, color = 'b', linestyle = 'dashed', label = 'Maximum B') self.plot_constant_limit(frequency, -6, ax, color = 'r', linestyle = 'dashed', label = 'Maximum C') def plot_limit_fer3(self, frequency: Frequency, ax: Axes) -> None: """ Plot fer 3 limit lines. """ self.plot_constant_limit(frequency, 5, ax, color = 'g', linestyle = 'dashed', label = 'Minimum A') self.plot_constant_limit(frequency, 0, ax, color = 'r', linestyle = 'dashed', label = 'Minimum B, C') def plot_limit_fer5(self, x: ndarray, y: ndarray, ax: Axes) -> None: """ Plot fer 5 limit lines. """ self.plot_relative_limit(x, y, 0.025, ax, linestyle = 'dashed', color = 'g', label = 'Limit A ±2.5%') self.plot_relative_limit(x, y, 0.05, ax, linestyle = 'dashed', color = 'b', label = 'Limit B ±5%') self.plot_relative_limit(x, y, 0.1, ax, linestyle = 'dashed', color = 'r', label = 'Limit C ±10%') def plot_limit_fer6(self, frequency: Frequency, ax: Axes) -> None: """ Plot fer 6 limit lines. """ self.plot_constant_limit(frequency, -15, ax, color = 'r', linestyle = 'dashed', label = 'Maximum A, B, C') def plot_fd_se_fer(self, s2xthru: Network, fig: Figure = None) -> Figure: """ Plot fixture electrical requirements (FER) for s values """ if fig is None: fig = figure(figsize=(8, 8)) fig.suptitle('Fixture electrical requirements (FER)') ax = fig.add_subplot(2, 2, 1) ax.set_title('FER1 2x-Thru IL') s2xthru.plot_s_db(1, 0, ax = ax, color = '0.5') s2xthru.plot_s_db(0, 1, ax = ax, color = 'k') self.plot_limit_fer1(s2xthru.frequency, ax) ax.legend(loc = 'lower left') ax = fig.add_subplot(2, 2, 2) ax.set_title('FER2 2x-Thru RL') s2xthru.plot_s_db(0, 0, ax = ax, color = '0.5') s2xthru.plot_s_db(1, 1, ax = ax, color = 'k') self.plot_limit_fer2(s2xthru.frequency, ax) ax.legend(loc = 'lower left') ax = fig.add_subplot(2, 1, 2) ax.set_title('FER3 2x-Thru IL - RL') s1 = s2xthru.s_db[:, 1, 0] - s2xthru.s_db[:, 0, 0] s2 = s2xthru.s_db[:, 0, 1] - s2xthru.s_db[:, 1, 1] ax.plot(s2xthru.frequency.f, s1, color = '0.5', label = 'S21 - S11') ax.plot(s2xthru.frequency.f, s2, color = 'k', label = 'S21 - S22') self.plot_limit_fer3(s2xthru.frequency, ax) ax.set_xlabel(f'Frequency ({s2xthru.frequency.unit})') ax.set_ylabel('Magnitude (dB)') ax.legend(loc = 'upper right') fig.tight_layout() return fig def plot_fd_mm_fer(self, s2xthru: Network, fig: Figure = None) -> Figure: """ Plot fixture electrical requirements (FER) for s values """ if fig is None: fig = figure(figsize=(8, 8)) fig.suptitle('Fixture electrical requirements (FER)') mm_2xthru = s2xthru.copy() mm_2xthru.se2gmm(p=2) ax = fig.add_subplot(2, 2, 1) ax.set_title('FER1 2x-Thru IL') mm_2xthru.plot_s_db(1, 0, ax = ax, color = '0.5') mm_2xthru.plot_s_db(0, 1, ax = ax, color = 'k') self.plot_limit_fer1(mm_2xthru.frequency, ax) ax.legend(loc = 'lower left') ax = fig.add_subplot(2, 2, 2) ax.set_title('FER2 2x-Thru RL') mm_2xthru.plot_s_db(0, 0, ax = ax, color = '0.5') mm_2xthru.plot_s_db(1, 1, ax = ax, color = 'k') self.plot_limit_fer2(mm_2xthru.frequency, ax) ax.legend(loc = 'lower left') ax = fig.add_subplot(2, 2, 3) ax.set_title('FER3 2x-Thru IL - RL') s1 = mm_2xthru.s_db[:, 1, 0] - mm_2xthru.s_db[:, 0, 0] s2 = mm_2xthru.s_db[:, 0, 1] - mm_2xthru.s_db[:, 1, 1] ax.plot(mm_2xthru.frequency.f, s1, color = '0.5', label = 'S21 - S11') ax.plot(mm_2xthru.frequency.f, s2, color = 'k', label = 'S21 - S22') self.plot_limit_fer3(mm_2xthru.frequency, ax) ax.set_xlabel(f'Frequency ({mm_2xthru.frequency.unit})') ax.set_ylabel('Magnitude (dB)') ax.legend(loc = 'upper right') ax = fig.add_subplot(2, 2, 4) ax.set_title('FER6 Differential to common CDL - IL') s1 = mm_2xthru.s_db[:, 2, 0] - mm_2xthru.s_db[:, 1, 0] s2 = mm_2xthru.s_db[:, 3, 1] - mm_2xthru.s_db[:, 0, 1] ax.plot(mm_2xthru.frequency.f, s1, color = '0.5', label = 'SCD21 - S21') ax.plot(mm_2xthru.frequency.f, s2, color = 'k', label = 'SCD42 - S12') self.plot_limit_fer6(mm_2xthru.frequency, ax) ax.legend(loc = 'upper right') fig.tight_layout() return fig def plot_td_se_fer(self, s2xthru: Network, sfix_dut_fix: Network, fig: Figure = None) -> Figure: """ Plot fixture electrical requirements (FER) for z values """ if fig is None: fig = figure(figsize=(8, 8)) fig.suptitle('Fixture electrical requirements (FER)') f = s2xthru.frequency.f s2xthru_dc = IEEEP370.extrapolate_to_dc(s2xthru) sfix_dut_fix_dc = IEEEP370.extrapolate_to_dc(sfix_dut_fix) n = s2xthru.frequency.npoints * 2 - 1 dt = 1e9 / (n * s2xthru.frequency.step) # ns s21 = s2xthru.s[:, 1, 0] t21 = fftshift(irfft(s21, n = n)) x_k = np.argmax(t21) - n//2 x_t = x_k * dt ax = fig.add_subplot(2, 2, 1) ax.set_title('FER5 TDR Z variation side 1') sfix_dut_fix_dc.plot_z_time_step(0, 0, color = 'k', ax = ax) s2xthru_dc.plot_z_time_step(0, 0, color = 'k', linestyle = 'dashed', ax = ax) x = ax.lines[-1].get_xdata()[:(x_k + n//2 + 1)] y = ax.lines[-1].get_ydata()[:(x_k + n//2 + 1)] self.plot_limit_fer5(x, y, ax) ax.legend(loc = 'lower right') # fit the plot around fix and 2x-thru in case FIX-DUT-FIX is much larger ymax = np.max(np.array([ax.lines[0].get_ydata()[(n // 2):(x_k + n // 2)], 1.1 * ax.lines[1].get_ydata()[(n // 2):(x_k + n // 2)]])) ymin = np.min(np.array([ax.lines[0].get_ydata()[(n // 2):(x_k + n // 2)], 0.9 * ax.lines[1].get_ydata()[(n // 2):(x_k + n // 2)]])) ax.set_ylim((ymin - 5, ymax + 5)) delay = 2 * x_t ax.set_xlim((-0.5 * delay, 1.5 * delay)) ax = fig.add_subplot(2, 2, 2) ax.set_title('FER5 TDR Z variation side 2') sfix_dut_fix_dc.plot_z_time_step(1, 1, color = 'k', ax = ax) s2xthru_dc.plot_z_time_step(1, 1, color = 'k', linestyle = 'dashed', ax = ax) x = ax.lines[-1].get_xdata()[:(x_k + n//2 + 1)] y = ax.lines[-1].get_ydata()[:(x_k + n//2 + 1)] self.plot_limit_fer5(x, y, ax) ax.legend(loc = 'lower right') # fit the plot around fix and 2x-thru in case FIX-DUT-FIX is much larger ymax = np.max(np.array([ax.lines[0].get_ydata()[(n // 2):(x_k + n // 2)], 1.1 * ax.lines[1].get_ydata()[(n // 2):(x_k + n // 2)]])) ymin = np.min(np.array([ax.lines[0].get_ydata()[(n // 2):(x_k + n // 2)], 0.9 * ax.lines[1].get_ydata()[(n // 2):(x_k + n // 2)]])) ax.set_ylim((ymin - 5, ymax + 5)) delay = 2 * x_t ax.set_xlim((-0.5 * delay, 1.5 * delay)) ax = fig.add_subplot(2, 1, 2) ax.set_title('FER8 TDT minimum length') s2xthru_dc.plot_z_time_impulse(1, 0, color = '0.5', ax = ax) s2xthru_dc.plot_z_time_impulse(1, 0, color = 'k', ax = ax) y = ax.lines[-1].get_ydata() y_lim = [np.min(y), np.max(y)] t_lim = [3.0e9 / f[-1], 3.0e9 / f[-1]] ax.plot([0, 0], y_lim, color = 'b', linestyle = 'dashed', label = 'Start') ax.plot(t_lim, y_lim, color = 'r', linestyle = 'dashed', label = 'Minimum A, B, C') ax.legend(loc = 'upper right') ax.set_xlim((-1, x_t + 1)) fig.tight_layout() return fig def plot_td_mm_fer(self, s2xthru: Network, sfix_dut_fix: Network, fig: Figure = None) -> Figure: """ Plot fixture electrical requirements (FER) for z values """ if fig is None: fig = figure(figsize=(8, 8)) mm_2xthru = s2xthru.copy() mm_2xthru.se2gmm(p=2) mm_fix_dut_fix = sfix_dut_fix.copy() mm_fix_dut_fix.se2gmm(p=2) fig.suptitle('Fixture electrical requirements (FER)') f = mm_2xthru.frequency.f se_2xthru_dc = IEEEP370.extrapolate_to_dc(s2xthru) mm_2xthru_dc = IEEEP370.extrapolate_to_dc(mm_2xthru) mm_fix_dut_fix_dc = IEEEP370.extrapolate_to_dc(mm_fix_dut_fix) n = mm_2xthru.frequency.npoints * 2 - 1 dt = 1e9 / (n * mm_2xthru.frequency.step) # ns s21 = mm_2xthru.s[:, 1, 0] t21 = fftshift(irfft(s21, n = n)) x_k = np.argmax(t21) - n//2 x_t = x_k * dt ax = fig.add_subplot(2, 2, 1) ax.set_title('FER5 TDR Z variation side 1') mm_fix_dut_fix_dc.plot_z_time_step(0, 0, color = 'k', ax = ax) mm_2xthru_dc.plot_z_time_step(0, 0, color = 'k', linestyle = 'dashed', ax = ax) x = ax.lines[-1].get_xdata()[:(x_k + n//2 + 1)] y = ax.lines[-1].get_ydata()[:(x_k + n//2 + 1)] self.plot_limit_fer5(x, y, ax) ax.legend(loc = 'lower right') # fit the plot around fix and 2x-thru in case FIX-DUT-FIX is much larger ymax = np.max(np.array([ax.lines[0].get_ydata()[(n // 2):(x_k + n // 2)], 1.1 * ax.lines[1].get_ydata()[(n // 2):(x_k + n // 2)]])) ymin = np.min(np.array([ax.lines[0].get_ydata()[(n // 2):(x_k + n // 2)], 0.9 * ax.lines[1].get_ydata()[(n // 2):(x_k + n // 2)]])) ax.set_ylim((ymin - 5, ymax + 5)) delay = 2 * x_t ax.set_xlim((-0.5 * delay, 1.5 * delay)) ax = fig.add_subplot(2, 2, 2) ax.set_title('FER5 TDR Z variation side 2') mm_fix_dut_fix_dc.plot_z_time_step(1, 1, color = 'k', ax = ax) mm_2xthru_dc.plot_z_time_step(1, 1, color = 'k', linestyle = 'dashed', ax = ax) x = ax.lines[-1].get_xdata()[:(x_k + n//2 + 1)] y = ax.lines[-1].get_ydata()[:(x_k + n//2 + 1)] self.plot_limit_fer5(x, y, ax) ax.legend(loc = 'lower right') # fit the plot around fix and 2x-thru in case FIX-DUT-FIX is much larger ymax = np.max(np.array([ax.lines[0].get_ydata()[(n // 2):(x_k + n // 2)], 1.1 * ax.lines[1].get_ydata()[(n // 2):(x_k + n // 2)]])) ymin = np.min(np.array([ax.lines[0].get_ydata()[(n // 2):(x_k + n // 2)], 0.9 * ax.lines[1].get_ydata()[(n // 2):(x_k + n // 2)]])) ax.set_ylim((ymin - 5, ymax + 5)) delay = 2 * x_t ax.set_xlim((-0.5 * delay, 1.5 * delay)) ax = fig.add_subplot(2, 2, 3) ax.set_title('FER7 TDT skew') se_2xthru_dc.plot_z_time_impulse(2, 0, color = '0.5', ax = ax) se_2xthru_dc.plot_z_time_impulse(3, 1, color = 'k', ax = ax) ax.legend(loc = 'upper right') ax.set_xlim((-1, x_t + 1)) ax = fig.add_subplot(2, 2, 4) ax.set_title('FER8 TDT minimum length') mm_2xthru_dc.plot_z_time_impulse(1, 0, color = '0.5', ax = ax) mm_2xthru_dc.plot_z_time_impulse(1, 0, color = 'k', ax = ax) y = ax.lines[-1].get_ydata() y_lim = [np.min(y), np.max(y)] t_lim = [3.0e9 / f[-1], 3.0e9 / f[-1]] ax.plot([0, 0], y_lim, color = 'b', linestyle = 'dashed', label = 'Start') ax.plot(t_lim, y_lim, color = 'r', linestyle = 'dashed', label = 'Minimum A, B, C') ax.legend(loc = 'upper right') ax.set_xlim((-1, x_t + 1)) fig.tight_layout() return fig class IEEEP370_FD_QM: def __init__(self, verbose: bool = False) -> None: """ IEEE 370 initial quality checking of raw data at the given frequency samples. Passivity, reciprocity, and causality checks are performed on the original S-parameters data in the frequency domain. Based on [IEEE370]_. Parameters ---------- verbose : :boolean Plot internal causality, passivity, and reciprocity figures (default False) References ---------- .. [IEEE370] IEEE Standard for Electrical Characterization of Printed Circuit Board and Related Interconnects at Frequencies up to 50 GHz", IEEE 370-2020. """ self.verbose = verbose def check_causality(self, ntwk: Network) -> float: """ Causality quality metrics verify that the complex S-parameters rotate clockwise in the complex plane. This is done by computing the normalized vector product on pairs of consecutive vectors between two frequency points. Parameters ---------- ntwk: :class:`~skrf.network.Network` object Network to be checked Returns ------- PQM : :class:`~skrf.network.Network` object Causality quality metric in percents """ if ntwk.nports == 1: raise (ValueError('Doesn\'t exist for one-ports')) Nf = ntwk.frequency.npoints CQM = zeros((ntwk.nports, ntwk.nports)) for i in range(ntwk.nports): for j in range(ntwk.nports): if len(np.unique(ntwk.s[:, i, j])) == 1: CQM[i, j] = 100. else: TotalR = 0 PositiveR = 0 for k in range(Nf - 2): Vn = ntwk.s[k + 1, i, j] - ntwk.s[k, i, j] Vn1 = ntwk.s[k + 2, i, j] - ntwk.s[k + 1, i, j] R = real(Vn1) * imag(Vn) - imag(Vn1) * real(Vn) if R > 0: PositiveR = PositiveR + R TotalR = TotalR + np.abs(R) CQM[i, j] = np.nanmax((PositiveR / TotalR, 0)) * 100. return np.min(CQM) def check_passivity(self, ntwk: Network) -> float: """ Passivity quality metrics verify that the 2-Norm of S-parameters is smaller or equal to 1 at each frequency. This is equivalent to checking the eigenvalues of the unity matrix subtracted by complex conjugate transposed S time S is greater or equal to zero. Parameters ---------- ntwk: :class:`~skrf.network.Network` object Network to be checked Returns ------- PQM : :class:`~skrf.network.Network` object Passivity quality metric in percents """ if ntwk.nports == 1: raise (ValueError('Doesn\'t exist for one-ports')) Nf = ntwk.frequency.npoints A = 1.00001 B = 0.1 self.PM = zeros(Nf) PW = zeros(Nf) for i in range(Nf): # numpy linalg norm is frobenius, use 2-norm like Matlab instead self.PM[i] = norm(ntwk.s[i, :, :], 2) if self.PM[i] > A: PW[i] = (self.PM[i] - A) / B return np.max([Nf - np.sum(PW), 0]) / Nf * 100. def check_reciprocity(self, ntwk: Network) -> float: """ Integrates the absolute difference between Sij and Sji at each frequency point. Ideally, Sij should be equal to Sji. Parameters ---------- ntwk: :class:`~skrf.network.Network` object Network to be checked Returns ------- PQM : :class:`~skrf.network.Network` object Reciprocity quality metric in percents """ if ntwk.nports == 1: raise (ValueError('Doesn\'t exist for one-ports')) Nf = ntwk.frequency.npoints B = 0.1 C = 1e-6 self.RM = zeros(Nf) RW = zeros(Nf) for i in range(Nf): self.RM[i] = 0 for k in range(ntwk.nports): for m in range(ntwk.nports): self.RM[i] = self.RM[i] + np.abs(ntwk.s[i, k, m] - ntwk.s[i, m, k]) self.RM[i] = self.RM[i] / (ntwk.nports * (ntwk.nports - 1)) if self.RM[i] > C: RW[i] = (self.RM[i] - C) / B return np.max([Nf - np.sum(RW), 0]) / Nf * 100. def check_se_quality(self, ntwk: Network, verbose: bool = False) -> dict: """ Single-ended passivity, reciprocity, and causality checks are performed on the original S-parameters data in the frequency domain. Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network to be checked verbose: :boolean Plot internal causality, passivity, and reciprocity figures. When True, override class verbose parameter. (default False). Returns ------- QM : :class:`dict` object Dictionnary with quality metrics """ verbose = self.verbose or verbose QM = {'causality': {'value': self.check_causality(ntwk), 'evaluation': ''}, 'passivity': {'value': self.check_passivity(ntwk), 'evaluation': ''}, 'reciprocity': {'value': self.check_reciprocity(ntwk), 'evaluation': ''}, } # evaluation if QM['causality']['value'] <= 20.: QM['causality']['evaluation'] = 'poor' elif QM['causality']['value'] <= 50.: QM['causality']['evaluation'] = 'inconclusive' elif QM['causality']['value'] <= 80: QM['causality']['evaluation'] = 'acceptable' else: QM['causality']['evaluation'] = 'good' if QM['passivity']['value'] <= 80.: QM['passivity']['evaluation'] = 'poor' elif QM['passivity']['value'] <= 99.: QM['passivity']['evaluation'] = 'inconclusive' elif QM['passivity']['value'] <= 99.9: QM['passivity']['evaluation'] = 'acceptable' else: QM['passivity']['evaluation'] = 'good' if QM['reciprocity']['value'] <= 80.: QM['reciprocity']['evaluation'] = 'poor' elif QM['reciprocity']['value'] <= 99.: QM['reciprocity']['evaluation'] = 'inconclusive' elif QM['reciprocity']['value'] <= 99.9: QM['reciprocity']['evaluation'] = 'acceptable' else: QM['reciprocity']['evaluation'] = 'good' # verbose if verbose: name = ntwk.name if ntwk.name else 'Network' fig = figure(figsize = (12, 4.4)) fig.suptitle('Initial checking in the frequency domain') ax = fig.add_subplot(1, 3, 1, projection = 'polar') ax.set_title('Causality') ntwk.plot_s_polar(ax = ax) ax.legend(loc = 'upper right') ax = fig.add_subplot(1, 3, 2) ax.set_title('Passivity') ax.plot(ntwk.frequency.f_scaled, self.PM, color = 'k', label = name) ax.plot([ntwk.frequency.f_scaled[0], ntwk.frequency.f_scaled[-1]], [1., 1.], color = 'r', linestyle = 'dashed', label = 'Maximum') ax.set_xlabel(f'Frequency ({ntwk.frequency.unit})') ax.set_ylabel('2-Norm(S)') ax.legend(loc = 'upper right') ax = fig.add_subplot(1, 3, 3) ax.set_title('Reciprocity') ax.plot(ntwk.frequency.f_scaled, self.RM, color = 'k', label = name) ax.set_xlabel(f'Frequency ({ntwk.frequency.unit})') ax.set_ylabel('Sum of S-pairs differences') ax.legend(loc = 'upper right') fig.tight_layout() return QM def check_mm_quality(self, ntwk: Network, verbose: bool = False) -> dict: """ Mixed-mode passivity, reciprocity, and causality checks are performed on the original S-parameters data in the frequency domain. The input networks should be 4-port single-ended and will be transformed to mixed-mode representation. Only the differential and the common modes are tested. Parameters ---------- ntwk: :class:`~skrf.network.Network` object Network to be checked verbose: :bool Plot internal causality, passivity, and reciprocity figures. When True, override class verbose parameter. (default False). Returns ------- QM : :class:`dict` object Dictionnary with quality metrics """ mm = ntwk.copy() mm.se2gmm(p = 2) QM = {'dd': self.check_se_quality(mm.subnetwork([0, 1]), verbose), 'cc': self.check_se_quality(mm.subnetwork([2, 3]), verbose)} return QM def print_qm(self, QM: dict) -> dict: """ Print the quality metrics dictionnary. Parameters ---------- QM: :class:`dict` object Dictionnary with quality metrics to print """ if 'dd' in QM: print('Differential mode') for k in QM['dd'].keys(): print(f"{k} is {QM['dd'][k]['evaluation']} ({QM['dd'][k]['value']:.2f}%)") print('Common mode') for k in QM['cc'].keys(): print(f"{k} is {QM['cc'][k]['evaluation']} ({QM['cc'][k]['value']:.2f}%)") else: for k in QM.keys(): print(f"{k} is {QM[k]['evaluation']} ({QM[k]['value']:.2f}%)") class IEEEP370_TD_QM: def __init__(self, data_rate: float, sample_per_UI: int, rise_time_per: float, pulse_shape: int = 1, extrapolation: int = 2, verbose: bool = False) -> None: """ IEEEP370_TD_QM Application-based quality checking of in the time domain. If necessary, the original S-parameters are extrapolated to a frequency of three times the desired data rate. Causal, passive, and reciprocal models are reconstructed and stimulated by a pulse. The difference between the original extrapolated signal and the ideal responses in the time domain are integrated to give metrics in millivolts. Based on [IEEE370]_. Parameters ----------- data_rate : :float Data rate (bps) sample_per_UI: :number Number of points of unit interval rise_time_per: :float Rise time from 20% to 80% divided by width pulse_shape : :number 1 is Gaussian; 2 is rectangular with Butterworth filter; 3 is rectangular with Gaussian filter extrapolation: :number 1 is constant extrapolation; 2 is zero padding verbose : :boolean Plot extrapolated frequency data, generated pulse and the time domain comparison between the original and the causality enforced responses References ---------- .. [IEEE370] IEEE Standard for Electrical Characterization of Printed Circuit Board and Related Interconnects at Frequencies up to 50 GHz", IEEE 370-2020. """ self.data_rate = data_rate self.sample_per_UI = sample_per_UI self.rise_time_per = rise_time_per self.pulse_shape = pulse_shape self.extrapolation = extrapolation self.verbose = verbose def add_conj(self, s_ij: ndarray): """ Add complex conjugates for ifft. Todo: Consider using irfft instead. """ N = len(s_ij) s_ij_conj = zeros(2 * N - 1, dtype = complex) s_ij_conj[:N] = s_ij for k in range(N - 1): s_ij_conj[k + N] = np.conj(s_ij_conj[N - k - 1]) return s_ij_conj def align_signals(self, x: ndarray, y: ndarray) -> ndarray: """ Compute the index shift between two identical shifted signals in the time domain. """ y = y.T x = x.T n = len(x) m = np.round(n * 0.1).astype(int) mm = np.round(n * 0.01).astype(int) xx = np.append(x[0:m], x[n - mm:n]) yy = np.append(y[0:m], y[n - mm:n]) x = xx y = yy yy = y[0:m] Ix = np.argmax(x) Iy = np.argmax(y) index = Ix - Iy yy = np.roll(y, index) n = np.min([1000, m]).astype(int) error = len(x) error_ind = 0 for k in range(-n + index, n + index): yy = np.roll(y, k) # numpy linalg norm is frobenius, use 2-norm like Matlab instead cur_error = np.linalg.norm(yy - x, 2) if error > cur_error: error_ind = k error = cur_error y = np.roll(y, error_ind) return error_ind def create_causal(self, ntwk: Network, data_rate: float, rise_time_per: float) -> (Network, ndarray): """ Create a causality-enforced network. Parameters ---------- ntwk : :class:`~skrf.network.Network` object Input network data_rate : :float Data rate (bps) rise_time_per: :float Rise time from 20% to 80% divided by width Returns ------- causal: :class:`~skrf.network.Network` object Causality-enforced network delay : :class:`~skrf.network.Network` object Alignment delay with original network for comparison sake """ causal = ntwk.copy() nports = causal.nports N = causal.frequency.npoints f = causal.frequency.f delay_matrix = zeros((nports, nports), dtype = int) for i in range(nports): for j in range(nports): for k in range(N): if np.abs(causal.s[k, i, j]) == 0: causal.s[k, i, j] = 0.00001 causal_ij, f, delay_ij = self.get_causal_model(f, causal.s[:, i, j], data_rate, rise_time_per) causal.s[:, i, j] = causal_ij delay_matrix[i, j] = delay_ij return (causal, delay_matrix) def create_passive(self, ntwk: Network) -> Network: """ Creat a passivity-enforced network. Parameters ---------- ntwk: :class:`~skrf.network.Network` object Input network Returns ------- reciprocal : :class:`~skrf.network.Network` object Passivity-enforced network """ passive = ntwk.copy() for i in range(ntwk.frequency.npoints): U, D, Vh = np.linalg.svd(ntwk.s[i, :, :]) for k in range(ntwk.nports): if D[k] > 1.: D[k] = 1. passive.s[i, :, :] = U @ np.diag(D) @ Vh return passive def create_reciprocal(self, ntwk: Network) -> Network: """ Creat a reciprocal network. The resulting network is the reciprocal of the input networks. The reciprocity is not enforced, but the time domain response will still gives metrics that is high if reciprocity is low. Parameters ---------- ntwk: :class:`~skrf.network.Network` object Input network Returns ------- reciprocal : :class:`~skrf.network.Network` object Reciprocal network """ reciprocal = ntwk.copy() for i in range(ntwk.nports): for j in range(ntwk.nports): reciprocal.s[:, i, j] = ntwk.s[:, j, i] return reciprocal def extrapolate_to_dc(self, ntwk: Network) -> Network: """ Extrapolate to DC and interpolate to the harmonic frequency sweep. Passivity is enforced on the DC extrapolated points. The missing part from dc to the first frequency sample should not exceed a phase change of π/2. Parameters ---------- ntwk: :class:`~skrf.network.Network` object Input network Returns ------- extrapolated : :class:`~skrf.network.Network` object Extrapolated network """ f = ntwk.frequency.f df = f[1] - f[0] nports = ntwk.nports f_0 = f[0] # numpy linalg norm is frobenius, use 2-norm like Matlab instead norm_0 = np.linalg.norm(ntwk.s[0, :, :], 2) if f[0] == 0: f_extra = f else: f_new = df * np.arange(0, np.ceil(f[0] / df)) f_extra = np.append(f_new, f) N_interp = np.floor(f_extra[-1]/df) f_interp = df * np.arange(0, N_interp + 1) s = zeros((len(f_extra), nports, nports), dtype = complex) s_interp = zeros((len(f_interp), nports, nports), dtype = complex) for i in range(nports): for j in range(nports): # dc extrapolation if f[0] == 0: s[:, i, j] = ntwk.s[:, i, j] s[0] = np.real(s[0, i, j]) else: s[:, i, j] = self.extrapolate_to_dc_ij(f, f_new, ntwk.s[:, i, j]) # interpolate to the harmonic sweep s_interp[:, i, j] = self.interpolate_ij(f_extra, f_interp, s[:, i, j]) # enforce passivity of extrapolated points i = 0 D_max = np.max(np.array([1., norm_0])) while f_interp[i] < f_0: U, D, Vh = np.linalg.svd(s_interp[i, :, :]) for k in range(nports): if D[k] > D_max: D[k] = D_max s_interp[i, :, :] = U @ np.diag(D) @ Vh i += 1 return Network(frequency = f_interp, s = s_interp, name = ntwk.name, z0 = ntwk.z0[0]) def extrapolate_to_dc_ij(self, f: ndarray, f_new: ndarray, s_ij: ndarray): """ Extrapolate single S-component to DC. The missing part from dc to the first frequency sample should not exceed a phase change of π/2. """ # calculate delay ph = -np.unwrap(np.angle(s_ij)) delay = self.get_delay(f, ph) # extract delay to smooth original function s_ij = s_ij * np.exp(1j * 2 * np.pi * f * delay) # extract real and imaginary parts from the original function re = np.real(s_ij) im = np.imag(s_ij) # create a*x^2+b parabola using (f(1),re(1)) and (f(2),re(2)) points a = (re[1] - re[0]) / (f[1]**2 - f[0]**2) b = re[0] - a * f[0]**2 # extend real part to DC re_new = a * f_new**2 + b re = np.append(re_new, re) # create a*x^3+b*x cubic parabola using (f(1),im(1)) and (f(2),im(2)) points a = (im[1]/f[1] - im[0]/f[0])/(f[1]**2 - f[0]**2) b = im[0]/f[0] - a * f[0]**2 # extend imaginary part to DC im_new = a * f_new**3 + b * f_new im = np.append(im_new, im) f_extra = np.append(f_new, f) # create complex function from real and imaginary parts s_ij_extra = re + 1j * im # return delay s_ij_extra = s_ij_extra * \ np.exp(-1j * 2 * np.pi * f_extra * delay) return s_ij_extra def extrapolate_to_fmax(self, ntwk: Network, data_rate: float, sample_per_UI: int, extrapolation: int)-> Network: """ Extrapolate network max frequency if required by parameters. This is usually three times the data rate. Parameters ---------- ntwk : :class:`~skrf.network.Network` object Input network data_rate : :float Data rate (bps) sample_per_UI: :number Number of points of generated pulse signal rise_time_per: :float Rise time divided by high time ratio extrapolation: :number 1 is constant extrapolation; 2 is zero padding Returns ------- extrapolated : :class:`~skrf.network.Network` object Extrapolated network """ f_max = 0.5 * data_rate * sample_per_UI df = ntwk.frequency.f[1] - ntwk.frequency.f[0] f_new = ntwk.frequency.f while(f_new[-1] < f_max): f_new = np.append(f_new, f_new[-1] + df) N1 = ntwk.frequency.npoints N = len(f_new) s_new = zeros((N, ntwk.nports, ntwk.nports), dtype = complex) for i in range(ntwk.nports): for j in range(ntwk.nports): s_new[:N1, i, j] = ntwk.s[:, i, j] ph = np.unwrap(np.angle(s_new[:N1, i, j])) dph = (ph[-1] - ph[0]) / (N1 - 1) for k in range(N1, N): if extrapolation == 1: s_new[k, i, j] = s_new[k - 1, i, j] * np.exp(1j * dph) else: s_new[k, i, j] = 0 return Network(frequency = f_new, s = s_new, name = ntwk.name, z0 = ntwk.z0[0]) def get_causal_model(self, f: ndarray, s_ij: ndarray, data_rate, rise_time_per) -> ndarray: """ Get causality-enforced model for a single S-parameter component Sij. """ df = f[1] - f[0] dt = 1. / (2 * f[-1] + df) # DC extrapolation # Already done. # Interpolate data # Already done. # extend to negative frequencies N = len(s_ij) s_ij[0] = np.real(s_ij[0]) s_ij_conj = self.add_conj(s_ij) # Extract magnitude s_ij_magn_conj = np.real(np.log(np.abs(s_ij_conj))) # Convert magnitude into time domain s_ij_magn_time = np.fft.ifft(s_ij_magn_conj) # Multiply by sign(t) for i in range(N, 2 * N - 1): s_ij_magn_time[i] = (-1.) * s_ij_magn_time[i] s_ij_magn_time = 1j * s_ij_magn_time # Calculate Phase s_ij_phase_enforced = np.real(fft(s_ij_magn_time)) # Calculate Delay delay = self.get_delay_time(f, s_ij, s_ij_phase_enforced[0:N], data_rate, rise_time_per) delay = np.round(delay / dt) * dt causal_ij = zeros(N, dtype = complex) for i in range(N): w = 2 * np.pi * f[i] causal_ij[i] = np.exp(s_ij_magn_conj[i]) * \ np.exp(-1j * s_ij_phase_enforced[i]) * np.exp(-1j * delay * w) delay = np.round(delay / dt).astype(int) return (causal_ij, f, delay) def get_delay(self, freq: ndarray, phase: ndarray) -> float: """ Get the front delay from phase and frequency vectors. Parameters ---------- freq: :ndarray Frequency (Hz) phase: :ndarray Phase (rad) Returns ------- delay: :float Delay """ N = len(freq) delay = 1. for i in range(N): if freq[i] > 0: delay_i = phase[i] / freq[i] / 2. / np.pi if delay > delay_i: delay = delay_i return delay def get_delay_time(self, freq: ndarray, s_ij: ndarray, phase_causal: ndarray, data_rate: float, rise_time_per: float) -> float: """ Get delay between original and causality enforced data in number of time samples. Parameters ---------- freq : :ndarray Frequency (Hz) s_ij : :ndarray Original single S-component. phase_causal : :ndarray Causality enforced phase (rad) data_rate : :float Data rate (bps) rise_time_per: :float Rise time from 20% to 80% divided by width Returns ------- delay: :float Delay """ N = len(freq) df = freq[1] - freq[0] dt = 1. / (2 * freq[-1] + df) # Gaussian filter f_cut = 3. * data_rate / 2. sigma = 1. / 2. / np.pi / f_cut gaussian = np.exp(-2 * np.pi * np.pi * freq * freq * sigma * sigma) original = s_ij * gaussian causal = np.abs(original) * np.exp(-1j * phase_causal) original_conj = self.add_conj(original) causal_conj = self.add_conj(causal) pulse = self.get_pulse_rect(dt, data_rate, 2 * N - 1, rise_time_per) pulse_original = original_conj * pulse pulse_causal = causal_conj * pulse v_origin = np.fft.ifft(pulse_original) / 2. v_causal = np.fft.ifft(pulse_causal) / 2. shift_ind = -1 * self.align_signals(v_causal, v_origin) return shift_ind * dt def get_pulse_gaussian(self, dt: float, data_rate: float, N: int, rise_time_per: float, verbose = False) -> ndarray: """ Get the FFT of a gaussian pulse. The pulse is shifted in time according to parameters. Parameters ---------- dt : :float Sample time (s) data_rate : :float Data rate (bps) N : :number Number of points of generated pulse signal rise_time_per: :float Rise time from 20% to 80% divided by width verbose : :boolean Plot referrence and generated pulses in the time domain Returns ------- fft : :ndarray FFT of the pulse signal """ n_samples = (N - 1) // 2 self.t_pulse = np.arange(-n_samples, n_samples + 1) * dt N = len(self.t_pulse) sigma = rise_time_per / (data_rate * \ (np.sqrt(-np.log(0.2))-np.sqrt(-np.log(0.8)))) self.v_ref = np.exp(-self.t_pulse**2 / sigma**2) k_middle = n_samples k_start = np.round(1.5 / data_rate / dt) - 1 self.v_pulse = zeros(self.t_pulse.shape) for i in range(N): self.v_pulse[i] = self.v_ref[np.mod(i + k_middle - k_start, N).astype(int)] if verbose: fig, ax = subplots(1, 1) ax.plot(self.t_pulse, self.v_ref, color = 'r', label = 'Reference') ax.plot(self.t_pulse, self.v_pulse, linestyle = 'dashed', label = 'Generated') ax.legend(loc = 'upper right') ax.set_ylabel('Amplitude (V)') ax.set_xlabel('Time (s)') ax.set_title('Gaussian Pulse') return fft(self.v_pulse) def get_pulse_rect(self, dt: float, data_rate: float, N: int, rise_time_per: float, verbose = False)-> ndarray: """ Get the FFT of a rectangular pulse with defined rise time. Rise time and fall time are equals. Parameters ---------- dt : :float Sample time (s) data_rate : :float Data rate (bps) N : :number Number of points of generated pulse signal rise_time_per: :float Rise time from 20% to 80% divided by width verbose : :boolean Plot reference and interpolated pulses in the time domain Returns ------- fft : :ndarray FFT of the pulse signal """ self.t_pulse = np.arange(0, N) * dt k_high = np.round(1. / data_rate / dt) k_rise = np.round(k_high * rise_time_per) k_offset = np.array([0, k_rise, k_rise, k_rise, k_rise, 0]) k_ref = np.array([0, 0, k_rise, k_high, k_high + k_rise, N - 1]) self.t_ref = dt * (k_offset + k_ref) self.v_ref = np.array([0, 0, 1, 1, 0, 0]) interp = interp1d(self.t_ref, self.v_ref) self.v_pulse = interp(self.t_pulse) if verbose: fig, ax = subplots(1, 1) ax.plot(self.t_ref, self.v_ref, color = 'r', marker = 'o', label = 'Reference') ax.plot(self.t_pulse, self.v_pulse, linestyle = 'dashed', label = 'Interpolated') ax.legend(loc = 'upper right') ax.set_ylabel('Amplitude (V)') ax.set_xlabel('Time (s)') ax.set_title('Rectangular Pulse') return fft(self.v_pulse) def get_time_domain(self, ntwk: Network, data_rate: float, rise_time_per: float, pulse_shape: int) -> (ndarray, ndarray): """ Get the impulse responses of the S-parameters. The pulse is defined as per application parameters. Parameters ---------- ntwk : :class:`~skrf.network.Network` object Input network data_rate : :float Data rate (bps) rise_time_per: :float Rise time from 20% to 80% divided by width pulse_shape : :number 1 is Gaussian; 2 is rectangular with Butterworth filter; 3 is rectangular with Gaussian filter Returns ------- v : :ndarray Impulse response amplitude vector t : :ndarray Impulse response time vector """ N = ntwk.frequency.npoints freq = ntwk.frequency.f df = freq[1] - freq[0] dt = 1 / (2 * freq[-1] + df) nports = ntwk.nports t = dt * np.arange(0, 2 * N - 1) v = zeros((2 * N - 1, nports, nports)) # Gaussian filter f_cut = 3. * data_rate / 2. sigma = 1. / 2. / np.pi / f_cut rise_time = 1. / data_rate * 1000 * rise_time_per f0 = 320 / rise_time if pulse_shape == 1: self.filter = np.ones(N, dtype = complex) self.pulse = self.get_pulse_gaussian(dt, data_rate, 2 * N - 1, rise_time_per) elif pulse_shape == 2: self.filter = 1. / (1 + 1j * freq / f0) self.pulse = self.get_pulse_rect(dt, data_rate, 2 * N - 1, 1.4 * rise_time_per) else: self.filter = np.exp(-2 * np.pi * np.pi * freq * freq * sigma * sigma) self.pulse = self.get_pulse_rect(dt, data_rate, 2 * N - 1, 1.4 * rise_time_per) for i in range(nports): for j in range(nports): s_ij = ntwk.s[:, i, j] * self.filter s_ij[0] = np.real(s_ij[0]) s_ij_conj = self.add_conj(s_ij) pulse_response_freq = self.pulse * s_ij_conj v[:, i, j] = np.real(np.fft.ifft(pulse_response_freq)) return (v, t) def get_td_difference_mv(self, v1: ndarray, v2: ndarray, t: ndarray, nports: int, data_rate: float) -> (ndarray, ndarray): """ Integrate the difference between two signals on units intervals in the time domain. The result has a physical estimation in millivolts of the worst-case bit sequence based on peak distortion analysis. """ N = len(t) dt = t[1] - t[0] UI = 1. / data_rate / dt max_bits = 31 time_domain_difference_mv = zeros((nports, nports)) N_UI = np.round(UI).astype(int) delta = zeros(N_UI) for i in range(nports): for j in range(nports): max_index = np.argmax(v1[:, i, j]) last_index = max_index + max_bits * UI lower_index = max_index - max_bits * UI for k in range(N_UI): delta[k] = 0 for m in range(np.floor(N / UI).astype(int) - 1): ind = k + np.floor(m * UI).astype(int) if lower_index >= 0: condition = (ind < last_index) and (ind > lower_index) else: condition = (ind < last_index) or (ind > N - lower_index - 1) if condition: delta[k] = delta[k] + np.abs(v2[ind, i, j] - v1[ind, i, j]) time_domain_difference_mv[i, j] = np.max(delta) return time_domain_difference_mv def get_td_causality_difference_mv(self, v1: ndarray, v2: ndarray, t: ndarray, nports: int, data_rate: float, delay_matrix: ndarray) -> (ndarray, ndarray): """ Integrate the difference between two signals on units intervals in the time domain. The result has a physical estimation in millivolts of the worst-case bit sequence based on peak distortion analysis. Also accounts for the causality minimum delay. """ N = len(t) dt = t[1] - t[0] UI = 1. / data_rate / dt max_bits = 31 time_domain_difference_mv = zeros((nports, nports)) N_UI = np.round(UI).astype(int) delta = zeros(N_UI) for i in range(nports): for j in range(nports): if i == j: delay_num = 0 else: delay_num = delay_matrix[i, j] for k in range(N_UI): delta[k] = 0 for m in range(max_bits): ind = delay_num - k - np.floor(m * UI).astype(int) - 2 if ind < 0: ind = N + ind delta[k] = delta[k] + np.abs(v2[ind, i, j] - v1[ind, i, j]) time_domain_difference_mv[i, j] = np.max(delta) return time_domain_difference_mv def interpolate_ij(self, f: ndarray, f_new: ndarray, s_ij: ndarray): """ Interpolate single S-parameter component Sij. """ # calculate delay delay = np.max([0, self.get_delay(f, -np.unwrap(np.angle(s_ij)))]) # extract delay to smooth original function s_ij = s_ij * np.exp(1j * 2 * np.pi * f * delay) # interpolate interp = interp1d(f, s_ij) s_ij_interp = interp(f_new) # return delay s_ij_interp = s_ij_interp * \ np.exp(-1j * 2 * np.pi * f_new * delay) return s_ij_interp def check_se_quality(self, ntwk: Network, verbose: bool = False) -> dict: """ Single-ended application-based quality checking of in the time domain. If necessary, the original S-parameters are extrapolated to a frequency of three times the desired data rate. Causal, passive, and reciprocal models are reconstructed and stimulated by a pulse. The difference between the original extrapolated signal and the ideal responses in the time domain are integrated to give metrics in millivolts. Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network to be checked verbose: :bool Plot internal causality, passivity, and reciprocity figures. When True, override class verbose parameter. (default False). Returns ------- QM : :class:`dict` object Dictionnary with quality metrics """ verbose = self.verbose or verbose if (1.5 * self.data_rate) > ntwk.frequency.f[-1]: warnings.warn('Maximum frequency is less then recomended frequency.', RuntimeWarning, stacklevel=2) # extrapolate max freq self.ntwk_interpolated = self.extrapolate_to_fmax(ntwk, self.data_rate, self.sample_per_UI, self.extrapolation) # extrapolate dc and interpolate with uniform step self.ntwk_interpolated = self.extrapolate_to_dc(self.ntwk_interpolated) if verbose: fig, axs = subplots(2, 3, figsize = (12, 7)) fig.suptitle('Application-based checking in the time domain') ax = axs[0, 0] ax.set_title('Extrapolation') self.ntwk_interpolated.frequency.unit = ntwk.frequency.unit # avoid log(0) issues with zero padding ntwk.plot_s_db(1, 0, color = 'r', ax = ax, label = 'Original, S21') if self.extrapolation == 2: nz_k = np.nonzero(self.ntwk_interpolated.s[:, 1, 0])[0] self.ntwk_interpolated[:nz_k[-1]].plot_s_db(1, 0, color = 'b', linestyle = 'dashed', ax = ax, label = 'Extrapolated, S21') else: self.ntwk_interpolated.plot_s_db(1, 0, color = 'b', linestyle = 'dashed', ax = ax, label = 'Extrapolated, S21') secax = ax.twinx() ntwk.plot_s_deg(1, 0, color = 'm', ax = secax, label = 'Original, S21') self.ntwk_interpolated.plot_s_deg(1, 0, color = 'c', linestyle = 'dashed', ax = secax, label = 'Extrapolated, S21') ax.legend(loc = 'upper left') secax.legend(loc = 'lower right') fig.tight_layout() # get Causal Matrix self.causal, self.delay_matrix = self.create_causal(self.ntwk_interpolated, self.data_rate, self.rise_time_per) # get Passive Matrix self.passive = self.create_passive(self.ntwk_interpolated) # get Reciprocal Matrix self.reciprocal = self.create_reciprocal(self.ntwk_interpolated) # get Time Domain Matrices self.v_causal, self.t_causal = self.get_time_domain(self.causal, self.data_rate, self.rise_time_per, self.pulse_shape) self.v_passive, self.t_passive = self.get_time_domain(self.passive, self.data_rate, self.rise_time_per, self.pulse_shape) self.v_reciprocal, self.t_reciprocal = self.get_time_domain(self.reciprocal, self.data_rate, self.rise_time_per, self.pulse_shape) self.v_origin, self.t_origin = self.get_time_domain(self.ntwk_interpolated, self.data_rate, self.rise_time_per, self.pulse_shape) # get Time Domain Difference self.causality_difference_mv = self.get_td_causality_difference_mv( self.v_causal, self.v_origin, self.t_origin, 2, self.data_rate, self.delay_matrix) self.passivity_difference_mv = self.get_td_difference_mv( self.v_passive, self.v_origin, self.t_origin, 2, self.data_rate) self.reciprocity_difference_mv = self.get_td_difference_mv( self.v_reciprocal, self.v_origin, self.t_origin, 2, self.data_rate) # numpy linalg norm is frobenius, use 2-norm like Matlab instead causality_metric = np.round( 1000 * np.linalg.norm(self.causality_difference_mv, 2), 1) passivity_metric = np.round( 1000 * np.linalg.norm(self.passivity_difference_mv, 2), 1) reciprocity_metric = np.round( 1000 * np.linalg.norm(self.reciprocity_difference_mv, 2), 1) # plot if verbose: # pulse # filter filter = self.add_conj(self.filter) pulse_response = self.pulse * filter v_filtered = np.real(np.fft.ifft(pulse_response)) ax = axs[1, 0] if self.pulse_shape == 1: ax.plot(self.t_pulse, self.v_ref, color = 'r', label = 'Reference') ax.plot(self.t_pulse, self.v_pulse, color = 'k', linestyle = 'dashed', label = 'Generated') ax.legend(loc = 'upper right') ax.set_title('Gaussian Pulse') else: ax.plot(self.t_ref, self.v_ref, color = 'r', marker = 'o', label = 'Reference') ax.plot(self.t_pulse, self.v_pulse, color = 'k', linestyle = 'dashed', label = 'Interpolated') ax.plot(self.t_pulse, v_filtered, color = 'b', linestyle = 'dotted', label = 'Filtered') ax.set_title('Filtered Rectangular Pulse') ax.legend(loc = 'upper right') ax.set_ylabel('Amplitude (V)') ax.set_xlabel('Time (s)') # time domain transmission ax = axs[0, 1] ax.set_title('TDR11') ax.plot(self.t_causal * 1e9, self.v_causal[:, 0, 0] / 2., label = 'causal', color = 'r') ax.plot(self.t_origin * 1e9, self.v_origin[:, 0, 0] / 2., label = 'original', color = 'k', linestyle = 'dashed') ax = axs[0, 2] ax.set_title('TDT21') ax.plot(self.t_causal * 1e9, self.v_causal[:, 1, 0] / 2., label = 'causal', color = 'r') ax.plot(self.t_origin * 1e9, self.v_origin[:, 1, 0] / 2., label = 'original', color = 'k', linestyle = 'dashed') ax = axs[1, 1] ax.set_title('TDT12') ax.plot(self.t_causal * 1e9, self.v_causal[:, 0, 1] / 2., label = 'causal', color = 'r') ax.plot(self.t_origin * 1e9, self.v_origin[:, 0, 1] / 2., label = 'original', color = 'k', linestyle = 'dashed') ax = axs[1, 2] ax.set_title('TDR22') ax.plot(self.t_causal * 1e9, self.v_causal[:, 1, 1] / 2., label = 'causal', color = 'r') ax.plot(self.t_origin * 1e9, self.v_origin[:, 1, 1] / 2., label = 'original', color = 'k', linestyle = 'dashed') for ax in axs[:, 1:].reshape(-1): ax.set_xlabel('Time (ns)') ax.set_ylabel('Amplitude (V)') ax.legend(loc = 'upper right') fig.tight_layout() QM = {'causality': {'value': causality_metric / 2., 'unit': 'mV', 'evaluation': ''}, 'passivity': {'value': passivity_metric / 2., 'unit': 'mV', 'evaluation': ''}, 'reciprocity': {'value': reciprocity_metric / 2., 'unit': 'mV', 'evaluation': ''}, } # evaluation CQM = QM['causality']['value'] if CQM >= 15.: QM['causality']['evaluation'] = 'poor' elif CQM >= 10.: QM['causality']['evaluation'] = 'inconclusive' elif CQM >= 5.: QM['causality']['evaluation'] = 'acceptable' else: QM['causality']['evaluation'] = 'good' PQM = QM['passivity']['value'] if PQM >= 15.: QM['passivity']['evaluation'] = 'poor' elif PQM >= 10.: QM['passivity']['evaluation'] = 'inconclusive' elif PQM >= 5.: QM['passivity']['evaluation'] = 'acceptable' else: QM['passivity']['evaluation'] = 'good' RQM = QM['reciprocity']['value'] if RQM >= 15.: QM['reciprocity']['evaluation'] = 'poor' elif RQM >= 10.: QM['reciprocity']['evaluation'] = 'inconclusive' elif RQM >= 5.: QM['reciprocity']['evaluation'] = 'acceptable' else: QM['reciprocity']['evaluation'] = 'good' return QM def check_mm_quality(self, ntwk: Network, verbose: bool = False) -> dict: """ Mixed-mode application-based quality checking of in the time domain. If necessary, the original S-parameters are extrapolated to a frequency of three times the desired data rate. Causal, passive, and reciprocal models are reconstructed and stimulated by a pulse. The difference between the original extrapolated signal and the ideal responses in the time domain are integrated to give metrics in millivolts. The input networks should be 4-port single-ended and will be transformed to mixed-mode representation. Only the differential and the common modes are tested. Parameters ---------- ntwk: :class:`~skrf.network.Network` object Network to be checked verbose: :bool Plot internal causality, passivity, and reciprocity figures. When True, override class verbose parameter. (default False). Returns ------- QM : :class:`dict` object Dictionnary with quality metrics """ mm = ntwk.copy() mm.se2gmm(p = 2) QM = {'dd': self.check_se_quality(mm.subnetwork([0, 1]), verbose), 'cc': self.check_se_quality(mm.subnetwork([2, 3]), verbose)} return QM def print_qm(self, QM: dict) -> dict: """ Print the quality metrics dictionnary. Parameters ---------- QM: :class:`dict` object Dictionnary with quality metrics to print """ if 'dd' in QM: print('Differential mode') for k in QM['dd'].keys(): print(f"{k} in the time domain is {QM['dd'][k]['evaluation']} " f"({QM['dd'][k]['value']} {QM['dd'][k]['unit']})") print('Common mode') for k in QM['cc'].keys(): print(f"{k} in the time domain is {QM['cc'][k]['evaluation']} " f"({QM['cc'][k]['value']} {QM['cc'][k]['unit']})") else: for k in QM.keys(): print(f"{k} in the time domain is {QM[k]['evaluation']} " f"({QM[k]['value']} {QM[k]['unit']})")
[docs] class IEEEP370_SE_NZC_2xThru(IEEEP370): """ Creates error boxes from a test fixture 2xThru network. Based on [ElSA20]_ and [I3E370]_. A deembedding object is created with a single 2xThru (FIX-FIX) network, which is split into left (FIX-1) and right (FIX-2) fixtures with IEEEP370 2xThru method. When :func:`Deembedding.deembed` is applied, the s-parameters of FIX-1 and FIX-2 are deembedded from the FIX_DUT_FIX network. This method is applicable only when there is a 2x-Thru network. The S-parameters bisection is done by time gating S11 and S22, taking the proper square root of the S21 corrected by return loss, and remixing the parameters according to the fixture signal flow graph. This method gives crude results but is robust. Example -------- >>> import skrf as rf >>> from skrf.calibration import IEEEP370_SE_NZC_2xThru Create network objects for 2x-Thru and FIX_DUT_FIX >>> s2xthru = rf.Network('2xthru.s2p') >>> fdf = rf.Network('f-dut-f.s2p') Create de-embedding object >>> dm = IEEEP370_SE_NZC_2xThru(dummy_2xthru = s2xthru, name = '2xthru') Apply deembedding to get the actual DUT network >>> dut = dm.deembed(fdf) Note ---- numbering diagram:: FIX-1 DUT FIX-2 +----+ +----+ +----+ -|1 2|---|1 2|---|2 1|- +----+ +----+ +----+ Warning ------- There are two differences compared to the original matlab implementation [I3E370]: - FIX-2 is flipped (see diagram above) - A more robust root choice solution is used that avoids the apparition of 180° phase jumps in the fixtures in certain circumstances References ---------- .. [ElSA20] Ellison J, Smith SB, Agili S., "Using a 2x-thru standard to achieve accurate de-embedding of measurements", Microwave Optical Technology Letter, 2020, https://doi.org/10.1002/mop.32098 .. [I3E370] https://opensource.ieee.org/elec-char/ieee-370/-/blob/master/TG1/IEEEP3702xThru.m, commit 49ddd78cf68ad5a7c0aaa57a73415075b5178aa6 """
[docs] def __init__(self, dummy_2xthru: Network, name: str = None, z0: float = 50, use_z_instead_ifft: bool = False, verbose: bool = False, forced_z0_line: float = None, *args, **kwargs) -> None: """ IEEEP370_SE_NZC_2xThru De-embedding Initializer Parameters ----------- dummy_2xthru : :class:`~skrf.network.Network` object 2xThru (FIX-FIX) network. z0 : reference impedance of the S-parameters (default: 50) name : string optional name of de-embedding object use_z_instead_ifft: use z-transform instead ifft. This method is not documented in the paper but exists in the IEEE repo. It could be used if the 2x-Thru is so short that there is not enough points in time domain to determine the length of half fixtures from the s21 impulse response and the the impedance at split plane from the s11 step response. Parameter `verbose` could be used for diagnostic in ifft mode. (default: False) forced_z0_line: If specified, the value for the split plane impedance is forced to `forced_z0_line`. The IEEEP370 standard recommends the 2x-Thru being at least three wavelengths at the highest measured frequency. This ensures that the split plane impedance measured in the S11 step response is free of reflections from the launches. If the 2x-Thru is too short, any point in the s11 step response contain reflections from the lanches and split plane impedance cannot be determined accurately by this method. In this case, setting the impedance manually can improve the results. However, it should be noted that each fixture model will still include some reflections from the opposite side launch because there is not enough time resolution to separate them. (Default: None) verbose : view the process (default: False) args, kwargs: passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.s2xthru = dummy_2xthru.copy() self.z0 = z0 dummies = [self.s2xthru] self.use_z_instead_ifft = use_z_instead_ifft self.forced_z0_line = forced_z0_line self.verbose = verbose # debug outputs self.x_end = None self.z_x = None IEEEP370.__init__(self, dummies, name, *args, **kwargs) self.s_side1, self.s_side2 = self.split2xthru(self.s2xthru)
[docs] def deembed(self, ntwk: Network) -> Network: """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object FIX-DUT-FIX network from which FIX-1 AND FIX-2 fixtures needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.s2xthru.frequency: warnings.warn('Network frequencies dont match dummy frequencies, attempting overlap.', RuntimeWarning, stacklevel=2) ntwk, s2xthru = overlap_multi([ntwk, self.s2xthru]) s_side1, s_side2 = self.split2xthru(s2xthru) else: s_side1 = self.s_side1 s_side2 = self.s_side2 return s_side1.inv ** ntwk ** s_side2.flipped().inv
[docs] def split2xthru(self, s2xthru: Network) -> (Network, Network): """ Perform the fixtures extraction. """ f = s2xthru.frequency.f s = s2xthru.s if not self.use_z_instead_ifft: # strip DC point if one exists if(f[0] == 0): warnings.warn( "DC point detected. An interpolated DC point will be included in the errorboxes.", RuntimeWarning, stacklevel=2 ) flag_DC = True f = f[1:] s = s[1:] else: flag_DC = False # interpolate S-parameters if the frequency vector is not acceptable if(f[1] - f[0] != f[0]): warnings.warn( """Non-uniform frequency vector detected. An interpolated S-parameter matrix will be created for this calculation. The output results will be re-interpolated to the original vector.""", RuntimeWarning, stacklevel=2 ) flag_df = True f_original = f projected_n = round(f[-1]/f[0]) if(projected_n <= 10000): fnew = f[0] * (np.arange(0, projected_n) + 1) else: dfnew = f[-1]/10000 fnew = dfnew * (np.arange(0, 10000) + 1) stemp = Network(frequency = Frequency.from_f(f, 'Hz'), s = s) f_interp = Frequency.from_f(fnew, unit = 'Hz') stemp.interpolate_self(f_interp, kind = 'cubic', fill_value = 'extrapolate') f = fnew s = stemp.s del stemp else: flag_df = False n = len(f) s11 = s[:, 0, 0] # get e001 and e002 # e001 s21 = s[:, 1, 0] dcs21 = IEEEP370.dc_interp(s21, f) t21 = fftshift(irfft(concatenate(([dcs21], s21)), axis=0), axes=0) x = np.argmax(t21) self.x_end = x dcs11 = IEEEP370.DC(s11,f) t11 = fftshift(irfft(concatenate(([dcs11], s11)), axis=0), axes=0) step11 = IEEEP370.makeStep(t11) z11 = -self.z0 * (step11 + 1) / (step11 - 1) if self.forced_z0_line: z11x = self.forced_z0_line else: z11x = 0.5 * (z11[x-1] + z11[x]) self.z_x = z11x if self.verbose: fig, (ax1, ax2) = subplots(2,1, sharex = True) fig.suptitle('Midpoint length and impedance determination') ax1.plot(t21, label = 't21') ax1.plot([x], [t21[x]], marker = 'o', linestyle = 'none', label = 't21x') ax1.grid() ax1.legend() ax2.plot(z11, label = 'z11') ax2.plot([x], [z11x], marker = 'o', linestyle = 'none', label = 'z11x') ax2.set_xlabel('t-samples') ax2.set_xlim((x - 50, x + 50)) ax2.grid() ax2.legend() temp = Network(frequency = Frequency.from_f(f, 'Hz'), s = s, z0 = self.z0) temp.renormalize(z11x) sr = temp.s del temp s11r = sr[:, 0, 0] s21r = sr[:, 1, 0] s12r = sr[:, 0, 1] s22r = sr[:, 1, 1] dcs11r = IEEEP370.DC(s11r, f) # irfft is equivalent to ifft(makeSymmetric(x)) t11r = fftshift(irfft(concatenate(([dcs11r], s11r)), axis=0), axes=0) t11r[x:] = 0 e001 = fft(ifftshift(t11r)) e001 = e001[1:n+1] dcs22r = IEEEP370.DC(s22r, f) t22r = fftshift(irfft(concatenate(([dcs22r], s22r)), axis=0), axes=0) t22r[x:] = 0 e002 = fft(ifftshift(t22r)) e002 = e002[1:n+1] # calc e111 and e112 e111 = (s22r - e002) / s12r e112 = (s11r - e001) / s21r # original implementation, 180° phase jumps in case of phase noise # # calc e01 # k = 1 # test = k * np.sqrt(s21r * (1 - e111 * e112)) # e01 = zeros((n), dtype = complex) # for i, value in enumerate(test): # if(i>0): # if(angle(test[i]) - angle(test[i-1]) > 0): # k = -1 * k # # mhuser : is it a problem with complex value cast to real here ? # e01[i] = k * np.sqrt(s21r[i] * (1 - e111[i] * e112[i])) # # calc e10 # k = 1 # test = k * np.sqrt(s12r * (1 - e111 * e112)) # e10 = zeros((n), dtype = complex) # for i, value in enumerate(test): # if(i>0): # if(angle(test[i]) - angle(test[i-1]) > 0): # k = -1 * k # # mhuser : is it a problem with complex value cast to real here ? # e10[i] = k * np.sqrt(s12r[i] * (1 - e111[i] * e112[i])) # calc e01 and e10 # avoid 180° phase jumps in case of phase noise e01 = np.sqrt(s21r * (1 - e111 * e112)) for i in range(n): if i > 0: if np.abs(-e01[i] - e01[i-1]) < np.abs(e01[i] - e01[i-1]): e01[i] = - e01[i] e10 = np.sqrt(s12r * (1 - e111 * e112)) for i in range(n): if i > 0: if np.abs(-e10[i] - e10[i-1]) < np.abs(e10[i] - e10[i-1]): e10[i] = - e10[i] # revert to initial freq axis if flag_df: interp_e001 = interp1d(f, e001, kind = 'cubic', fill_value = 'extrapolate', assume_sorted = True) e001 = interp_e001(f_original) interp_e01 = interp1d(f, e01, kind = 'cubic', fill_value = 'extrapolate', assume_sorted = True) e01 = interp_e01(f_original) interp_e111 = interp1d(f, e111, kind = 'cubic', fill_value = 'extrapolate', assume_sorted = True) e111 = interp_e111(f_original) interp_e002 = interp1d(f, e002, kind = 'cubic', fill_value = 'extrapolate', assume_sorted = True) e002 = interp_e002(f_original) interp_e10 = interp1d(f, e10, kind = 'cubic', fill_value = 'extrapolate', assume_sorted = True) e10 = interp_e10(f_original) interp_e112 = interp1d(f, e112, kind = 'cubic', fill_value = 'extrapolate', assume_sorted = True) e112 = interp_e112(f_original) f = f_original # dc point was included in the original file if flag_DC: e001 = concatenate(([IEEEP370.dc_interp(e001, f)], e001)) e01 = concatenate(([IEEEP370.dc_interp(e01, f)], e01)) e111 = concatenate(([IEEEP370.dc_interp(e111, f)], e111)) e002 = concatenate(([IEEEP370.dc_interp(e002, f)], e002)) e10 = concatenate(([IEEEP370.dc_interp(e10, f)], e10)) e112 = concatenate(([IEEEP370.dc_interp(e112, f)], e112)) f = concatenate(([0], f)) # S-parameters are now setup correctly n = len(f) fixture_model_1r = zeros((n, 2, 2), dtype = complex) fixture_model_1r[:, 0, 0] = e001 fixture_model_1r[:, 1, 0] = e01 fixture_model_1r[:, 0, 1] = e01 fixture_model_1r[:, 1, 1] = e111 fixture_model_2r = zeros((n, 2, 2), dtype = complex) fixture_model_2r[:, 1, 1] = e002 fixture_model_2r[:, 0, 1] = e10 fixture_model_2r[:, 1, 0] = e10 fixture_model_2r[:, 0, 0] = e112 # create the S-parameter objects for the errorboxes s_fixture_model_r1 = Network(frequency = Frequency.from_f(f, 'Hz'), s = fixture_model_1r, z0 = z11x) s_fixture_model_r2 = Network(frequency = Frequency.from_f(f, 'Hz'), s = fixture_model_2r, z0 = z11x) # renormalize the S-parameter errorboxes to the original reference impedance s_fixture_model_r1.renormalize(self.z0) s_fixture_model_r2.renormalize(self.z0) s_side1 = s_fixture_model_r1 s_side2 = s_fixture_model_r2.flipped() # FIX-2 is flipped in skrf else: z = s2xthru.z ZL = zeros(z.shape, dtype = complex) ZR = zeros(z.shape, dtype = complex) for i in range(len(f)): ZL[i, :, :] = [ [z[i, 0, 0] + z[i, 1, 0], 2. * z[i, 1, 0]], [2. * z[i, 1, 0], 2. * z[i, 1, 0]] ] ZR[i, :, :] = [ [2. * z[i, 0, 1], 2. * z[i, 0, 1]], [2. * z[i, 0, 1], z[i, 1, 1] + z[i, 0, 1]] ] s_side1 = Network(frequency = s2xthru.frequency, z = ZL, z0 = self.z0) s_side2 = Network(frequency = s2xthru.frequency, z = ZR, z0 = self.z0) s_side2.flip() # FIX-2 is flipped in skrf return (s_side1, s_side2)
[docs] def plot_check_residuals(self, ax: Axes = None) -> (Figure, Axes): res = self.deembed(self.s2xthru) res.name = 'Residuals' if ax is None: fig, ax = subplots(1, 2, sharex = True, figsize=(10, 5)) else: fig = ax.get_figure() fig.suptitle('Consistency test #1: Self de-embedding of 2X-Thru') ax[0].set_title('Magnitude residuals') res.plot_s_db(1,0, ax = ax[0], color = '0.5') res.plot_s_db(0,1, ax = ax[0], color = 'k') ax[0].plot([res.frequency.f_scaled[0], res.frequency.f_scaled[-1]], [0.1, 0.1], linestyle = 'dashed', color = 'r', label = 'Limit') ax[0].plot([res.frequency.f_scaled[0], res.frequency.f_scaled[-1]], [-0.1, -0.1], linestyle = 'dashed', color = 'r') ax[0].legend(loc = 'upper right') ax[1].set_title('Phase residuals') res.plot_s_deg(1,0, ax = ax[1], color = '0.5') res.plot_s_deg(0,1, ax = ax[1], color = 'k') ax[1].plot([res.frequency.f_scaled[0], res.frequency.f_scaled[-1]], [1, 1], linestyle = 'dashed', color = 'r', label = 'Limit') ax[1].plot([res.frequency.f_scaled[0], res.frequency.f_scaled[-1]], [-1, -1], linestyle = 'dashed', color = 'r') ax[1].legend(loc = 'upper right') fig.tight_layout() return (fig, ax)
[docs] def plot_check_impedance(self, fix_dut_fix: Network = None, ax: Axes = None, window: str = 'hamming') -> (Figure, Axes): # if dc point already exists, it will be replaced s2xthru = IEEEP370.extrapolate_to_dc(self.s2xthru) fix1 = IEEEP370.extrapolate_to_dc(self.s_side1) fix2 = IEEEP370.extrapolate_to_dc(self.s_side2) if fix_dut_fix is not None: fix_dut_fix = IEEEP370.extrapolate_to_dc(fix_dut_fix) n = s2xthru.frequency.npoints * 2 - 1 dt = 1e9 / (n * s2xthru.frequency.step) # ns if ax is None: fig, ax = subplots(1, 2, sharex = True, figsize=(10, 5)) else: fig = ax.get_figure() fig.suptitle('Consistency test #2: Compare the TDR of the fixture model to the FIX-DUT-FIX') ax[0].set_title('Side 1') fix1.plot_z_time_step(0, 0, window = window, ax = ax[0], color = 'k') s2xthru.plot_z_time_step(0, 0, window = window, ax = ax[0], linestyle = 'dotted', color = '0.2') y = ax[0].lines[-1].get_ydata() if fix_dut_fix is not None: fix_dut_fix.plot_z_time_step(0, 0, window = window, ax = ax[0], linestyle = 'dashed', color = 'm') ax[0].plot([0], [y[n // 2]], marker = 's', color = 'k', label = 'start') ax[0].plot([(self.x_end - (n // 2) - 1) * dt], [self.z_x], marker = 'o', color = 'k', label = f'z_x = {self.z_x:0.1f} ohm') # fit the plot around fix and 2x-thru in case FIX-DUT-FIX is much larger ymax = np.max(np.array([ax[0].lines[0].get_ydata()[(n // 2):(self.x_end + n // 2)], ax[0].lines[1].get_ydata()[(n // 2):(self.x_end + n // 2)]])) ymin = np.min(np.array([ax[0].lines[0].get_ydata()[(n // 2):(self.x_end + n // 2)], ax[0].lines[1].get_ydata()[(n // 2):(self.x_end + n // 2)]])) ax[0].set_ylim((ymin - 5, ymax + 5)) ax[0].legend(loc = 'lower left') ax[1].set_title('Side 2') fix2.plot_z_time_step(0, 0, window = window, ax = ax[1], color = 'k') s2xthru.plot_z_time_step(1, 1, window = window, ax = ax[1], linestyle = 'dotted', color = '0.2') y = ax[1].lines[-1].get_ydata() if fix_dut_fix is not None: fix_dut_fix.plot_z_time_step(1, 1, window = window, ax = ax[1], linestyle = 'dashed', color = 'm') ax[1].plot([0], [y[n // 2]], marker = 's', color = 'k', label = 'start') ax[1].plot([(self.x_end - (n // 2) - 1) * dt], [self.z_x], marker = 'o', color = 'k', label = f'z_x = {self.z_x:0.1f} ohm') # fit the plot around fix and 2x-thru in case FIX-DUT-FIX is much larger ymax = np.max(np.array([ax[1].lines[0].get_ydata()[(n // 2):(self.x_end + n // 2)], ax[1].lines[1].get_ydata()[(n // 2):(self.x_end + n // 2)]])) ymin = np.min(np.array([ax[1].lines[0].get_ydata()[(n // 2):(self.x_end + n // 2)], ax[1].lines[1].get_ydata()[(n // 2):(self.x_end + n // 2)]])) ax[1].set_ylim((ymin - 5, ymax + 5)) delay = 2 * (self.x_end - (n // 2)) * dt ax[1].set_xlim((-0.5 * delay, 1.5 * delay)) ax[1].legend(loc = 'lower left') fig.tight_layout() return (fig, ax)
[docs] class IEEEP370_MM_NZC_2xThru(IEEEP370): """ Creates error boxes from a 4-port test fixture 2xThru. Based on [ElSA20]_ and [I3E370]_. A deembedding object is created with a single 2xThru (FIX-FIX) network, which is split into left (FIX-1_2) and right (FIX-3_4) fixtures with IEEEP370 2xThru method. When :func:`Deembedding.deembed` is applied, the s-parameters of FIX-1 and FIX-2 are deembedded from the FIX_DUT_FIX network. This method is applicable only when there is a 2x-Thru measurement. The S-parameters bisection is done by time gating S11 and S22, taking the proper square root of the S21 corrected by return loss, and remixing the parameters according to the fixture signal flow graph. This method gives crude results but is robust. Note ---- The `port_order` ='first', means front-to-back also known as odd/even, while `port_order`='second' means left-to-right also known as sequential. `port_order`='third' means yet another numbering method. Next figure show example of port numbering with 4-port networks. The `scikit-rf` cascade ** 2N-port operator use second scheme. This is very convenient to write compact deembedding and other expressions. numbering diagram:: port_order = 'first' +---------+ -|0 1|- -|2 3|- +---------+ port_order = 'second' +---------+ -|0 2|- -|1 3|- +---------+ port_order = 'third' +---------+ -|0 3|- -|1 2|- +---------+ use `Network.renumber` to change port ordering. Example -------- >>> import skrf as rf >>> from skrf.calibration import IEEEP370_MM_NZC_2xThru Create network objects for 2xThru and FIX-DUT-FIX >>> s2xthru = rf.Network('2xthru.s4p') >>> fdf = rf.Network('f-dut-f.s4p') Create de-embedding object >>> dm = IEEEP370_MM_NZC_2xThru(dummy_2xthru = s2xthru, name = '2xthru') Apply deembedding to get the actual DUT network >>> dut = dm.deembed(fdf) Note ---- numbering diagram:: FIX-1_2 DUT FIX-3_4 +----+ +----+ +----+ -|1 3|---|1 3|---|3 1|- -|2 4|---|2 4|---|4 2|- +----+ +----+ +----+ Warning ------- There are two differences compared to the original matlab implementation [I3E370]: - FIX-2 is flipped (see diagram above) - A more robust root choice solution is used that avoids the apparition of 180° phase jumps in the fixtures in certain circumstances References ---------- .. [ElSA20] Ellison J, Smith SB, Agili S., "Using a 2x-thru standard to achieve accurate de-embedding of measurements", Microwave Optical Technology Letter, 2020, https://doi.org/10.1002/mop.32098 .. [I3E370] https://opensource.ieee.org/elec-char/ieee-370/-/blob/master/TG1/IEEEP370mmZc2xthru.m commit 49ddd78cf68ad5a7c0aaa57a73415075b5178aa6 """
[docs] def __init__(self, dummy_2xthru: Network, name: str = None, z0: float = 50, port_order: PortOrderT = 'second', use_z_instead_ifft: bool = False, verbose: bool = False, forced_z0_line_dd: float = None, forced_z0_line_cc: float = None, *args, **kwargs) -> None: """ IEEEP370_MM_NZC_2xThru De-embedding Initializer Parameters ----------- dummy_2xthru : :class:`~skrf.network.Network` object 2xThru (FIX-FIX) network. z0 : reference impedance of the S-parameters (default: 50) port_order : ['first', 'second', 'third'] specify what numbering scheme to use. See above. (default: second) name : string optional name of de-embedding object use_z_instead_ifft: use z-transform instead ifft. This method is not documented in the paper but exists in the IEEE repo. It could be used if the 2x-Thru is so short that there is not enough points in time domain to determine the length of half fixtures from the s21 impulse response and the the impedance at split plane from the s11 step response. Parameter `verbose` could be used for diagnostic in ifft mode. (default: False) forced_z0_line_dd: If specified, the value for the split plane impedance is forced to `forced_z0_line` for differential-mode. The IEEEP370 standard recommends the 2x-Thru being at least three wavelengths at the highest measured frequency. This ensures that the split plane impedance measured in the S11 step response is free of reflections from the launches. If the 2x-Thru is too short, any point in the s11 step response contain reflections from the lanches and split plane impedance cannot be determined accurately by this method. In this case, setting the impedance manually can improve the results. However, it should be noted that each fixture model will still include some reflections from the opposite side launch because there is not enough time resolution to separate them. (Default: None) forced_z0_line_cc: Same behaviour as `forced_z0_line_dd`, but for the common-mode split plane impedance. (Default: None) verbose : view the process (default: False) args, kwargs: passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.s2xthru = dummy_2xthru.copy() self.z0 = z0 self.port_order = port_order dummies = [self.s2xthru] self.use_z_instead_ifft = use_z_instead_ifft self.verbose = verbose self.forced_z0_line_dd = forced_z0_line_dd self.forced_z0_line_cc = forced_z0_line_cc # debug outputs self.x_end_dd = None self.z_x_dd = None self.x_end_cc = None self.z_x_cc = None IEEEP370.__init__(self, dummies, name, *args, **kwargs) self.se_side1, self.se_side2 = self.split2xthru(self.s2xthru)
[docs] def deembed(self, ntwk: Network) -> Network: """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object FIX-DUT-FIX network from which FIX-1_2 and FIX-3_4 fixtures needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.s2xthru.frequency: warnings.warn('Network frequencies dont match dummy frequencies, attempting overlap.', RuntimeWarning, stacklevel=2) ntwk, s2xthru = overlap_multi([ntwk, self.s2xthru]) se_side1, se_side2 = self.split2xthru(s2xthru) else: se_side1 = self.se_side1 se_side2 = self.se_side2 # check if 4-port if ntwk.nports != 4: raise(ValueError('2xthru has to be a 4-port network.')) # renumber if required if self.port_order == 'first': N = ntwk.nports old_order = list(range(N)) new_order = list(range(0, N, 2)) + list(range(1, N, 2)) ntwk.renumber(old_order, new_order) elif self.port_order == 'third': N = ntwk.nports old_order = list(range(N)) new_order = list(range(0, N//2)) + list(range(N-1, N//2-1, -1)) ntwk.renumber(old_order, new_order) deembedded = se_side1.inv ** ntwk ** se_side2.flipped().inv #renumber back if required if self.port_order != 'second': deembedded.renumber(new_order, old_order) return deembedded
[docs] def split2xthru(self, se_2xthru: Network) -> (Network, Network): """ Perform the fixtures extraction. """ # check if 4-port if se_2xthru.nports != 4: raise(ValueError('2xthru has to be a 4-port network.')) # renumber if required if self.port_order == 'first': N = se_2xthru.nports old_order = list(range(N)) new_order = list(range(0, N, 2)) + list(range(1, N, 2)) se_2xthru.renumber(old_order, new_order) elif self.port_order == 'third': N = se_2xthru.nports old_order = list(range(N)) new_order = list(range(0, N//2)) + list(range(N-1, N//2-1, -1)) se_2xthru.renumber(old_order, new_order) #convert to mixed-modes mm_2xthru = se_2xthru.copy() mm_2xthru.se2gmm(p = 2) #extract common and differential mode and model fixtures for each sdd = subnetwork(mm_2xthru, [0, 1]) scc = subnetwork(mm_2xthru, [2, 3]) dm_dd = IEEEP370_SE_NZC_2xThru(dummy_2xthru = sdd, z0 = self.z0 * 2, use_z_instead_ifft = self.use_z_instead_ifft, verbose = self.verbose, forced_z0_line = self.forced_z0_line_dd) self.x_end_dd = dm_dd.x_end self.z_x_dd = dm_dd.z_x dm_cc = IEEEP370_SE_NZC_2xThru(dummy_2xthru = scc, z0 = self.z0 / 2, use_z_instead_ifft = self.use_z_instead_ifft, verbose = self.verbose, forced_z0_line = self.forced_z0_line_cc) self.x_end_cc = dm_cc.x_end self.z_x_cc = dm_cc.z_x #convert back to single-ended mm_side1 = concat_ports([dm_dd.s_side1, dm_cc.s_side1], port_order = 'first') se_side1 = mm_side1.copy() se_side1.gmm2se(p = 2) mm_side2 = concat_ports([dm_dd.s_side2, dm_cc.s_side2], port_order = 'first') se_side2 = mm_side2.copy() se_side2.gmm2se(p = 2) return (se_side1, se_side2)
[docs] def plot_check_residuals(self, ax: Axes = None) -> (Figure, Axes): res = self.deembed(self.s2xthru) res.name = 'Residuals' res.se2gmm(p=2) if ax is None: fig, ax = subplots(1, 2, sharex = True, figsize=(10, 5)) else: fig = ax.get_figure() fig.suptitle('Consistency test #1: Self de-embedding of 2X-Thru') ax[0].set_title('Magnitude residuals') res.plot_s_db(1,0, ax = ax[0]) res.plot_s_db(0,1, ax = ax[0]) res.plot_s_db(3,2, ax = ax[0]) res.plot_s_db(2,3, ax = ax[0]) ax[0].plot([res.frequency.f_scaled[0], res.frequency.f_scaled[-1]], [0.1, 0.1], linestyle = 'dashed', color = 'r', label = 'Limit') ax[0].plot([res.frequency.f_scaled[0], res.frequency.f_scaled[-1]], [-0.1, -0.1], linestyle = 'dashed', color = 'r') ax[0].legend(loc = 'upper right') ax[1].set_title('Phase residuals') res.plot_s_deg(1,0, ax = ax[1]) res.plot_s_deg(0,1, ax = ax[1]) res.plot_s_deg(3,2, ax = ax[1]) res.plot_s_deg(2,3, ax = ax[1]) ax[1].plot([res.frequency.f_scaled[0], res.frequency.f_scaled[-1]], [1, 1], linestyle = 'dashed', color = 'r', label = 'Limit') ax[1].plot([res.frequency.f_scaled[0], res.frequency.f_scaled[-1]], [-1, -1], linestyle = 'dashed', color = 'r') ax[1].legend(loc = 'upper right') fig.tight_layout() return (fig, ax)
[docs] def plot_check_impedance(self, fix_dut_fix: Network = None, ax: Axes = None, window: str = 'hamming') -> (Figure, Axes): # if dc point already exists, it will be replaced s2xthru = self.s2xthru.copy() s2xthru.se2gmm(p=2) s2xthru = IEEEP370.extrapolate_to_dc(s2xthru) fix1 = self.se_side1.copy() fix1.se2gmm(p=2) fix1 = IEEEP370.extrapolate_to_dc(fix1) fix2 = self.se_side2.copy() fix2.se2gmm(p=2) fix2 = IEEEP370.extrapolate_to_dc(fix2) if fix_dut_fix is not None: fix_dut_fix = fix_dut_fix.copy() fix_dut_fix.se2gmm(p=2) fix_dut_fix = IEEEP370.extrapolate_to_dc(fix_dut_fix) n = s2xthru.frequency.npoints * 2 - 1 dt = 1e9 / (n * s2xthru.frequency.step) # ns if ax is None: fig, ax = subplots(1, 2, sharex = True, figsize=(10, 5)) else: fig = ax.get_figure() fig.suptitle('Consistency test #2: Compare the TDR of the fixture model to the FIX-DUT-FIX') ax[0].set_title('Side 1') fix1.plot_z_time_step(0, 0, window = window, ax = ax[0], color = 'k') s2xthru.plot_z_time_step(0, 0, window = window, ax = ax[0], linestyle = 'dotted', color = '0.2') y = ax[0].lines[-1].get_ydata() if fix_dut_fix is not None: fix_dut_fix.plot_z_time_step(0, 0, window = window, ax = ax[0], linestyle = 'dashed', color = 'm') ax[0].plot([0], [y[n // 2]], marker = 's', color = 'k', label = 'start') ax[0].plot([(self.x_end_dd - (n // 2) - 1) * dt], [self.z_x_dd], marker = 'o', color = 'k', label = f'z_x = {self.z_x_dd:0.1f} ohm') fix1.plot_z_time_step(2, 2, window = window, ax = ax[0], color = 'k') s2xthru.plot_z_time_step(2, 2, window = window, ax = ax[0], linestyle = 'dotted', color = '0.2') if fix_dut_fix is not None: fix_dut_fix.plot_z_time_step(2, 2, window = window, ax = ax[0], linestyle = 'dashed', color = 'b') ax[0].legend(loc = 'center left') ax[1].set_title('Side 2') fix2.plot_z_time_step(0, 0, window = window, ax = ax[1], color = 'k') s2xthru.plot_z_time_step(1, 1, window = window, ax = ax[1], linestyle = 'dotted', color = '0.2') y = ax[1].lines[-1].get_ydata() if fix_dut_fix is not None: fix_dut_fix.plot_z_time_step(1, 1, window = window, ax = ax[1], linestyle = 'dashed', color = 'm') ax[1].plot([0], [y[n // 2]], marker = 's', color = 'k', label = 'start') ax[1].plot([(self.x_end_dd - (n // 2) - 1) * dt], [self.z_x_dd], marker = 'o', color = 'k', label = f'z_x = {self.z_x_dd:0.1f} ohm') fix2.plot_z_time_step(2, 2, window = window, ax = ax[1], color = 'k') s2xthru.plot_z_time_step(3, 3, window = window, ax = ax[1], linestyle = 'dotted', color = '0.2') if fix_dut_fix is not None: fix_dut_fix.plot_z_time_step(3, 3, window = window, ax = ax[1], linestyle = 'dashed', color = 'b') delay = 2 * (self.x_end_dd - (n // 2)) * dt ax[1].set_xlim((-0.5 * delay, 1.5 * delay)) ax[1].legend(loc = 'center left') fig.tight_layout() return (fig, ax)
[docs] class IEEEP370_SE_ZC_2xThru(IEEEP370): """ Creates error boxes from 2x-Thru and FIX-DUT-FIX networks. Based on [I3E370]_. A deembedding object is created with 2x-Thru (FIX-FIX) and FIX-DUT-FIX measurements, which are split into left (FIX-1) and right (FIX-2) fixtures with IEEEP370 Zc2xThru method. When :func:`Deembedding.deembed` is applied, the s-parameters of FIX-1 and FIX-2 are deembedded from FIX_DUT_FIX network. This method is applicable only when there is 2xThru and FIX_DUT_FIX networks. The possible difference of impedance between 2x-Thru and FIX-DUT-FIX is corrected. The algorithm computes the length of the fixtures by halving the delay of 2x-Thru in time domain transmission. The propagation constant gamma is also determined from the 2xThru. It then peels the FIX-DUT-FIX time domain impedance profile iteratively in cycles of determining start impedance and deembedding a single time sample long transmission line. Example -------- >>> import skrf as rf >>> from skrf.calibration import IEEEP370_SE_ZC_2xThru Create network objects for 2xThru and FIX-DUT-FIX >>> s2xthru = rf.Network('2xthru.s2p') >>> fdf = rf.Network('f-dut-f.s2p') Create de-embedding object >>> dm = IEEEP370_SE_ZC_2xThru(dummy_2xthru = s2xthru, dummy_fix_dut_fix = fdf, bandwidth_limit = 10e9, pullback1 = 0, pullback2 = 0, leadin = 0, name = 'zc2xthru') Apply deembedding to get the DUT >>> dut = dm.deembed(fdf) Note ---- numbering diagram:: FIX-1 DUT FIX-2 +----+ +----+ +----+ -|1 2|---|1 2|---|2 1|- +----+ +----+ +----+ Warning ------- There is one difference compared to the original matlab implementation [I3E370]: - FIX-2 is flipped (see diagram above) References ---------- .. [I3E370] https://opensource.ieee.org/elec-char/ieee-370/-/blob/master/TG1/IEEEP370Zc2xThru.m commit 49ddd78cf68ad5a7c0aaa57a73415075b5178aa6 """
[docs] def __init__(self, dummy_2xthru: Network, dummy_fix_dut_fix: Network, name: str = None, z0: float = 50, bandwidth_limit: float = 0, pullback1: int = 0, pullback2: int = 0, side1: bool = True, side2: bool = True, NRP_enable: bool = True, leadin: int = 1, verbose: bool = False, *args, **kwargs) -> None: """ IEEEP370_SE_ZC_2xThru De-embedding Initializer Parameters ----------- dummy_2xthru : :class:`~skrf.network.Network` object 2xThru (FIX-FIX) network. name : string optional name of de-embedding object z0 : reference impedance of the S-parameters (default: 50) bandwidth_limit : max frequency for a fitting function (default: 0, use all s-parameters without fit) pullback1, pullback2 : a number of discrete points to leave in the fixture on side 1 respectively on side 2 (default: 0 leave all) side1, side2 : set to de-embed the side1 resp. side2 errorbox (default: True) NRP_enable : set to enforce the Nyquist Rate Point during de-embedding and to add the appropriote delay to the errorboxes (default: True) leadin : a number of discrete points before t = 0 that are non-zero from calibration error (default: 1) verbose : view the process (default: False) args, kwargs: passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.s2xthru = dummy_2xthru.copy() self.sfix_dut_fix = dummy_fix_dut_fix.copy() dummies = [self.s2xthru] self.z0 = z0 self.bandwidth_limit = bandwidth_limit self.pullback1 = pullback1 self.pullback2 = pullback2 self.side1 = side1 self.side2 = side2 self.NRP_enable = NRP_enable self.leadin = leadin self.verbose = verbose self.flag_DC = False self.flag_df = False # debug outputs self.gamma = None self.x_end = None self.z_side1 = None self.z_side2 = None IEEEP370.__init__(self, dummies, name, *args, **kwargs) self.s_side1, self.s_side2 = self.split2xthru(self.s2xthru.copy(), self.sfix_dut_fix)
[docs] def deembed(self, ntwk: Network) -> Network: """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object FIX-DUT-FIX network from which FIX-1 and FIX-2 fixtures needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.s2xthru.frequency: warnings.warn('Network frequencies dont match dummy frequencies, attempting overlap.', RuntimeWarning, stacklevel=2) ntwk, s2xthru = overlap_multi([ntwk, self.s2xthru]) s_side1, s_side2 = self.split2xthru(s2xthru, self.sfix_dut_fix) else: s_side1 = self.s_side1 s_side2 = self.s_side2 return s_side1.inv ** ntwk ** s_side2.flipped().inv
[docs] def makeErrorBox_v7(self, s_dut: Network, s2x: Network, gamma: ndarray, z0: float, pullback:int) -> (Network, Network): """ Extract the fixtures on both sides. """ f = s2x.frequency.f n = len(f) s212x = s2x.s[:, 1, 0] DC21 = IEEEP370.dc_interp(s212x, f) x = np.argmax(irfft(concatenate(([DC21], s212x)))) self.x_end = x - pullback # index of last TDR point of fixture #define relative length #python first index is 0, thus 1 should be added to get the length l = 1. / (2 * (x + 1)) #define the reflections to be mimicked s11dut = s_dut.s[:, 0, 0] s22dut = s_dut.s[:, 1, 1] if self.verbose: z1 = IEEEP370.getz(s11dut, f, z0) z2 = IEEEP370.getz(s22dut, f, z0) #peel the fixture away and create the fixture model #python range to n-1, thus 1 to be added to have proper iteration number for i in range(self.x_end + 1): zline1 = IEEEP370.getz(s11dut, f, z0)[0] zline2 = IEEEP370.getz(s22dut, f, z0)[0] TL1 = self.makeTL(zline1,z0,gamma,l) TL2 = self.makeTL(zline2,z0,gamma,l) sTL1 = s_dut.copy() sTL1.s = TL1 sTL2 = s_dut.copy() sTL2.s = TL2 if i == 0: errorbox1 = sTL1 errorbox2 = sTL2 else: errorbox1 = errorbox1 ** sTL1 errorbox2 = errorbox2 ** sTL2 # equivalent to function removeTL(in,TL1,TL2,z0) # no need to flip sTL2 because it is symmetrical s_dut = sTL1.inv ** s_dut ** sTL2.inv #IEEE abcd implementation # abcd_TL1 = sTL1.a # abcd_TL2 = sTL2.a # abcd_in = s_dut.a # for j in range(len(s_dut.frequency.f)): # abcd_in[j, :, :] = np.linalg.lstsq(abcd_TL1[j, :, :].T, # np.linalg.lstsq(abcd_TL1[j, :, :], abcd_in[j, :, :], # rcond=None)[0].T, rcond=None)[0].T # s_dut.a = abcd_in s11dut = s_dut.s[:, 0, 0] s22dut = s_dut.s[:, 1, 1] # store fixture z for debug if(i == self.x_end): self.z_side1 = IEEEP370.getz(errorbox1.s[:, 0, 0], f, z0) self.z_side2 = IEEEP370.getz(errorbox2.s[:, 0, 0], f, z0) if self.verbose: zdut1 = IEEEP370.getz(s11dut, f, z0) zdut2 = IEEEP370.getz(s22dut, f, z0) fig, axs = subplots(1, 2, sharex = True, figsize=(2*6.4, 4.8)) axs[0].plot(ifftshift(zdut1), label = 'DUT') axs[0].plot(ifftshift(self.z_side1), label = 'FIX-1') axs[0].plot(ifftshift(z1), color = 'k', linestyle = 'dashed', label = 'FIX-DUT-FIX') axs[0].set_xlim((n-50, n+x*2+50)) axs[0].legend() axs[0].set_title('Left') axs[0].set_ylabel('Z (ohm)') axs[1].plot(ifftshift(zdut2), label = 'DUT') axs[1].plot(ifftshift(self.z_side2), label = 'FIX-2') axs[1].plot(ifftshift(z2), color = 'k', linestyle = 'dashed', label = 'FIX-DUT-FIX') axs[1].set_xlim((n-50, n+x*2+50)) axs[1].legend() axs[1].set_title('Right') axs[1].set_ylabel('Z (ohm)') return errorbox1, errorbox2.flipped()
[docs] def makeErrorBox_v8(self, s_dut: Network, s2x: Network, gamma: ndarray, z0: float, pullback: int) -> Network: """ Extract the fixture only on a single side. """ f = s2x.frequency.f n = len(f) s212x = s2x.s[:, 1, 0] # extract midpoint of 2x-thru DC21 = IEEEP370.dc_interp(s212x, f) x = np.argmax(irfft(concatenate(([DC21], s212x)))) self.x_end = x - pullback # index of last TDR point of fixture #define relative length #python first index is 0, thus 1 should be added to get the length l = 1. / (2 * (x + 1)) #define the reflections to be mimicked s11dut = s_dut.s[:, 0, 0] if self.verbose: z1 = IEEEP370.getz(s11dut, f, z0) #peel the fixture away and create the fixture model #python range to n-1, thus 1 to be added to have proper iteration number for i in range(self.x_end + 1): zline1 = IEEEP370.getz(s11dut, f, z0)[0] TL1 = self.makeTL(zline1,z0,gamma,l) sTL1 = s_dut.copy() sTL1.s = TL1 if i == 0: errorbox1 = sTL1 else: errorbox1 = errorbox1 ** sTL1 # equivalent to function removeTL_side1(in,TL,z0) s_dut = sTL1.inv ** s_dut s11dut = s_dut.s[:, 0, 0] # store fixture z for debug if(i == self.x_end): self.z_side1 = IEEEP370.getz(errorbox1.s[:, 0, 0], f, z0) if self.verbose: zdut1 = IEEEP370.getz(s11dut, f, z0) fig, axs = subplots(1, 1, sharex = True, figsize=(6.4, 4.8)) axs.plot(ifftshift(zdut1), label = 'DUT') axs.plot(ifftshift(self.z_side1), label = 'FIX') axs.plot(ifftshift(z1), color = 'k', linestyle = 'dashed', label = 'FIX-DUT-FIX') axs.set_xlim((n-50, n+x*2+50)) axs.legend() axs.set_ylabel('Z (ohm)') return errorbox1
[docs] def split2xthru(self, s2xthru: Network, sfix_dut_fix: Network) -> (Network, Network): """ Perform the fixtures extraction. """ f = sfix_dut_fix.frequency.f s = sfix_dut_fix.s # check for bad inputs # check for DC point if(f[0] == 0): warnings.warn( "DC point detected. The included DC point will not be used during extraction.", RuntimeWarning, stacklevel=2 ) self.flag_DC = True f = f[1:] s = s[1:] sfix_dut_fix = Network(frequency = Frequency.from_f(f, 'Hz'), s = s) s2xthru.interpolate_self(Frequency.from_f(f, 'Hz')) # check for bad frequency vector df = f[1] - f[0] tol = 0.1 # allow a tolerance of 0.1 from delta-f to starting f (prevent non-issues from precision) if(np.abs(f[0] - df) > tol): warnings.warn( """Non-uniform frequency vector detected. An interpolated S-parameter matrix will be created for this calculation. The output results will be re-interpolated to the original vector.""", RuntimeWarning, stacklevel=2 ) self.flag_df = True f_original = f projected_n = np.floor(f[-1]/f[0]) fnew = f[0] * (np.arange(0, projected_n) + 1) f_interp = Frequency.from_f(fnew, unit = 'Hz') sfix_dut_fix.interpolate_self(f_interp, kind = 'cubic', fill_value = 'extrapolate') s2xthru.interpolate_self(f_interp, kind = 'cubic', fill_value = 'extrapolate') f = fnew # check if 2x-thru is not the same frequency vector as the # fixture-dut-fixture if(not np.array_equal(sfix_dut_fix.frequency.f, s2xthru.frequency.f)): s2xthru.interpolate(sfix_dut_fix.frequency, kind = 'cubic', fill_value = 'extrapolate') warnings.warn( """2x-thru does not have the same frequency vector as the fixture-dut-fixture. Interpolating to fix problem.""", RuntimeWarning, stacklevel=2 ) # enforce Nyquist rate point if self.NRP_enable: sfix_dut_fix, TD = IEEEP370.NRP(sfix_dut_fix) s2xthru, _ = IEEEP370.NRP(s2xthru, -TD) # remove lead-in points if self.leadin > 0: _, temp1, temp2 = IEEEP370.peelNPointsLossless( IEEEP370.shiftNPoints(sfix_dut_fix, self.leadin), self.leadin, z0 = self.z0) leadin1 = IEEEP370.shiftOnePort(temp1, -self.leadin, 0) leadin2 = IEEEP370.shiftOnePort(temp2, -self.leadin, 1) # calculate gamma #grabbing s21 s212x = s2xthru.s[:, 1, 0] #get the attenuation and phase constant per length beta_per_length = -unwrap(angle(s212x)) # because lossless would be abs(S11)**2 + abs(S21)**2 = 1 attenuation = np.abs(s2xthru.s[:,1,0])**2 / (1. - np.abs(s2xthru.s[:,0,0])**2) alpha_per_length = (10.0 * np.log10(attenuation)) / -8.686 # not 20 * log10() because of **2 above if self.bandwidth_limit == 0: #divide by 2*n + 1 to get prop constant per discrete unit length self.gamma = alpha_per_length + 1j * beta_per_length # gamma without DC else: #fit the attenuation up to the limited bandwidth bwl_x = np.argmin(np.abs(f - self.bandwidth_limit)) X = np.array([np.sqrt(f[0:bwl_x+1]), f[0:bwl_x+1], f[0:bwl_x+1]**2]) b = np.linalg.lstsq(X.conj().T, alpha_per_length[0:bwl_x+1], rcond=None)[0] alpha_per_length_fit = b[0] * np.sqrt(f) + b[1] * f + b[2] * f**2 #divide by 2*n + 1 to get prop constant per discrete unit length self.gamma = alpha_per_length_fit + 1j * beta_per_length # gamma without DC if self.verbose: fig, axs = subplots(1, 2, figsize=(2*6.4, 4.8)) fig.suptitle('Gamma determination') axs[0].plot(s2xthru.frequency.f_scaled, alpha_per_length, label = 'alpha per length') if self.bandwidth_limit != 0: f_bw_hz = self.bandwidth_limit f_bw = f_bw_hz / s2xthru.frequency.multiplier unit = s2xthru.frequency.unit alpha_bw = b[0] * np.sqrt(f_bw_hz) + b[1] * f_bw_hz + b[2] * f_bw_hz**2 axs[0].plot(s2xthru.frequency.f_scaled, alpha_per_length_fit, label = 'alpha per length fit') axs[0].plot([f_bw], [alpha_bw], color = 'k', marker = 'o', linestyle = None, label = f'bandwidth_limit = {f_bw} {unit}') axs[0].legend() axs[0].set_xlabel(f'Frequency ({s2xthru.frequency.unit})') axs[0].set_ylabel('Alpha (Neper/length)') axs[1].plot(s2xthru.frequency.f_scaled, beta_per_length, label = 'beta per length') axs[1].set_xlabel(f'Frequency ({s2xthru.frequency.unit})') axs[1].set_ylabel('Beta (rad/length)') axs[1].legend() # extract error boxes # make the both error box s_side1 = IEEEP370.thru(sfix_dut_fix) s_side2 = IEEEP370.thru(sfix_dut_fix) # In the implementation, FIX-2 is flipped. # This does not met IEEEP370 numbering recommandation but is left as # is for comparison ease. if self.pullback1 == self.pullback2 and self.side1 and self.side2: (s_side1, s_side2) = self.makeErrorBox_v7(sfix_dut_fix, s2xthru, self.gamma, self.z0, self.pullback1) elif self.side1 and self.side2: s_side1 = self.makeErrorBox_v8(sfix_dut_fix, s2xthru, self.gamma, self.z0, self.pullback1) s_side2 = self.makeErrorBox_v8(sfix_dut_fix.flipped(),s2xthru, self.gamma, self.z0, self.pullback2) s_side2 = s_side2.flipped() elif self.side1: s_side1 = self.makeErrorBox_v8(sfix_dut_fix, s2xthru, self.gamma, self.z0, self.pullback1) elif self.side2: s_side2 = self.makeErrorBox_v8(sfix_dut_fix.flipped(),s2xthru, self.gamma, self.z0, self.pullback2) s_side2 = s_side2.flipped() else: warnings.warn( "no output because no output was requested", RuntimeWarning, stacklevel=2 ) # interpolate to original frequency if needed # revert back to original frequency vector if self.flag_df: f_interp = Frequency.from_f(f_original, unit = 'Hz') s_side1.interpolate_self(f_interp, kind = 'cubic', fill_value = 'extrapolate') s_side2.interpolate_self(f_interp, kind = 'cubic', fill_value = 'extrapolate') # add DC back in if self.flag_DC: s_side1 = IEEEP370.add_dc(s_side1) s_side2 = IEEEP370.add_dc(s_side2) # remove lead in if self.leadin > 0: s_side1 = leadin1 ** s_side1 s_side2 = s_side2 ** leadin2 # if Nyquist Rate Point enforcement is enabled if self.NRP_enable: s_side1, _ = IEEEP370.NRP(s_side1, TD, 0) s_side2, _ = IEEEP370.NRP(s_side2, TD, 1) # unflip FIX-2 as per IEEEP370 numbering recommandation return (s_side1, s_side2.flipped())
[docs] def plot_check_residuals(self, ax: Axes = None) -> (Figure, Axes): res = self.deembed(self.s2xthru) res.name = 'Residuals' if ax is None: fig, ax = subplots(1, 2, sharex = True, figsize=(10, 5)) else: fig = ax.get_figure() fig.suptitle('Consistency test #1: Self de-embedding of 2X-Thru') ax[0].set_title('Magnitude residuals') res.plot_s_db(1,0, ax = ax[0], color = '0.5') res.plot_s_db(0,1, ax = ax[0], color = 'k') ax[0].plot([res.frequency.f[0], res.frequency.f[-1]], [0.1, 0.1], linestyle = 'dashed', color = 'r', label = 'Limit') ax[0].plot([res.frequency.f[0], res.frequency.f[-1]], [-0.1, -0.1], linestyle = 'dashed', color = 'r') ax[0].legend(loc = 'upper right') ax[1].set_title('Phase residuals') res.plot_s_deg(1,0, ax = ax[1], color = '0.5') res.plot_s_deg(0,1, ax = ax[1], color = 'k') ax[1].plot([res.frequency.f[0], res.frequency.f[-1]], [1, 1], linestyle = 'dashed', color = 'r', label = 'Limit') ax[1].plot([res.frequency.f[0], res.frequency.f[-1]], [-1, -1], linestyle = 'dashed', color = 'r') ax[1].legend(loc = 'upper right') fig.tight_layout() return (fig, ax)
[docs] def plot_check_impedance(self, fix_dut_fix: Network = None, ax: Axes = None, window: str = 'hamming') -> (Figure, Axes): # if dc point already exists, it will be replaced s2xthru = IEEEP370.extrapolate_to_dc(self.s2xthru) fix1 = IEEEP370.extrapolate_to_dc(self.s_side1) fix2 = IEEEP370.extrapolate_to_dc(self.s_side2) if fix_dut_fix is not None: fix_dut_fix = IEEEP370.extrapolate_to_dc(fix_dut_fix) else: fix_dut_fix = IEEEP370.extrapolate_to_dc(self.sfix_dut_fix) n = s2xthru.frequency.npoints * 2 - 1 dt = 1e9 / (n * s2xthru.frequency.step) # ns if ax is None: fig, ax = subplots(1, 2, sharex = True, figsize=(10, 5)) else: fig = ax.get_figure() fig.suptitle('Consistency test #2: Compare the TDR of the fixture model to the FIX-DUT-FIX') ax[0].set_title('Side 1') fix1.plot_z_time_step(0, 0, window = window, ax = ax[0], color = 'k') y = ax[0].lines[-1].get_ydata() s2xthru.plot_z_time_step(0, 0, window = window, ax = ax[0], linestyle = 'dotted', color = '0.2') fix_dut_fix.plot_z_time_step(0, 0, window = window, ax = ax[0], linestyle = 'dashed', color = 'm') ax[0].plot([-self.leadin * dt], [y[n // 2 - self.leadin]], marker = 's', color = 'k', label = f'start (leadin = {self.leadin})') ax[0].plot([self.x_end * dt], [y[self.x_end + n // 2]], marker = 'o', color = 'k', label = f'end (pullback1 = {self.pullback1})') # fit the plot around fix and 2x-thru in case FIX-DUT-FIX is much larger ymax = np.max(np.array([ax[0].lines[0].get_ydata()[(n // 2):(self.x_end + n // 2)], ax[0].lines[2].get_ydata()[(n // 2):(self.x_end + n // 2)]])) ymin = np.min(np.array([ax[0].lines[0].get_ydata()[(n // 2):(self.x_end + n // 2)], ax[0].lines[2].get_ydata()[(n // 2):(self.x_end + n // 2)]])) ax[0].set_ylim((ymin - 5, ymax + 5)) ax[0].legend(loc = 'lower left') ax[1].set_title('Side 2') fix2.plot_z_time_step(0, 0, window = window, ax = ax[1], color = 'k') y = ax[1].lines[-1].get_ydata() s2xthru.plot_z_time_step(1, 1, window = window, ax = ax[1], linestyle = 'dotted', color = '0.2') fix_dut_fix.plot_z_time_step(1, 1, window = window, ax = ax[1], linestyle = 'dashed', color = 'm') ax[1].plot([-self.leadin * dt], [y[n // 2 - self.leadin]], marker = 's', color = 'k', label = f'start (leadin = {self.leadin})') ax[1].plot([self.x_end * dt], [y[self.x_end + n // 2]], marker = 'o', color = 'k', label = f'end (pullback2 = {self.pullback2})') # fit the plot around fix and 2x-thru in case FIX-DUT-FIX is much larger ymax = np.max(np.array([ax[1].lines[0].get_ydata()[(n // 2):(self.x_end + n // 2)], ax[1].lines[2].get_ydata()[(n // 2):(self.x_end + n // 2)]])) ymin = np.min(np.array([ax[1].lines[0].get_ydata()[(n // 2):(self.x_end + n // 2)], ax[1].lines[2].get_ydata()[(n // 2):(self.x_end + n // 2)]])) ax[1].set_ylim((ymin - 5, ymax + 5)) delay = 2 * self.x_end * dt ax[1].set_xlim((-0.5 * delay, 1.5 * delay)) ax[1].legend(loc = 'lower left') fig.tight_layout() return (fig, ax)
[docs] class IEEEP370_MM_ZC_2xThru(IEEEP370): """ Creates error boxes from a 4-port from 2x-Thru and FIX-DUT-FIX networks. Based on [I3E370]_. A deembedding object is created with 2x-Thru (FIX-FIX) and FIX-DUT-FIX measurements, which are split into left (FIX-1_2) and right (FIX-3_4) fixtures with IEEEP370 Zc2xThru method. When :func:`Deembedding.deembed` is applied, the s-parameters of FIX-1_2 and FIX-3_4 are deembedded from FIX_DUT_FIX network. This method is applicable only when there is 2xThru and FIX_DUT_FIX networks. The possible difference of impedance between 2x-Thru and FIX-DUT-FIX is corrected. The algorithm computes the length of the fixtures by halving the delay of 2x-Thru in time domain transmission. The propagation constant gamma is also determined from the 2xThru. It then peels the FIX-DUT-FIX time domain impedance profile iteratively in cycles of determining start impedance and deembedding a single time sample long transmission line. Note ---- The `port_order` ='first', means front-to-back also known as odd/even, while `port_order`='second' means left-to-right also known as sequential. `port_order`='third' means yet another numbering method. Next figure show example of port numbering with 4-port networks. The `scikit-rf` cascade ** 2N-port operator use second scheme. This is very convenient to write compact deembedding and other expressions. numbering diagram:: port_order = 'first' +---------+ -|0 1|- -|2 3|- +---------+ port_order = 'second' +---------+ -|0 2|- -|1 3|- +---------+ port_order = 'third' +---------+ -|0 3|- -|1 2|- +---------+ use `Network.renumber` to change port ordering. Example -------- >>> import skrf as rf >>> from skrf.calibration import IEEEP370_MM_ZC_2xThru Create network objects for 2xThru and FIX-DUT-FIX >>> s2xthru = rf.Network('2xthru.s4p') >>> fdf = rf.Network('f-dut-f.s4p') Create de-embedding object >>> dm = IEEEP370_MM_ZC_2xThru(dummy_2xthru = s2xthru, dummy_fix_dut_fix = fdf, bandwidth_limit = 10e9, pullback1 = 0, pullback2 = 0, leadin = 0, name = 'zc2xthru') Apply deembedding to get the DUT >>> dut = dm.deembed(fdf) Note ---- numbering diagram:: FIX-1_2 DUT FIX-3_4 +----+ +----+ +----+ -|1 3|---|1 3|---|3 1|- -|2 4|---|2 4|---|4 2|- +----+ +----+ +----+ Warning ------- There is one difference compared to the original matlab implementation [I3E370]: - FIX-2 is flipped (see diagram above) References ---------- .. [I3E370] https://opensource.ieee.org/elec-char/ieee-370/-/blob/master/TG1/IEEEP370mmZc2xthru.m commit 49ddd78cf68ad5a7c0aaa57a73415075b5178aa6 """
[docs] def __init__(self, dummy_2xthru: Network, dummy_fix_dut_fix: Network, name: str = None, z0: float = 50, port_order: PortOrderT = 'second', bandwidth_limit: float = 0, pullback1: int = 0, pullback2: int = 0, side1: bool = True, side2: bool = True, NRP_enable: bool = True, leadin: int = 1, verbose: bool = False, *args, **kwargs) -> None: """ IEEEP370_MM_ZC_2xThru De-embedding Initializer Parameters ----------- dummy_2xthru : :class:`~skrf.network.Network` object 2xThru (FIX-FIX) network. name : string optional name of de-embedding object z0 : reference impedance of the S-parameters (default: 50) port_order : ['first', 'second', 'third'] specify what numbering scheme to use. See above. (default: second) bandwidth_limit : max frequency for a fitting function (default: 0, use all s-parameters without fit) pullback1, pullback2 : a number of discrete points to leave in the fixture on side 1 respectively on side 2 (default: 0 leave all) side1, side2 : set to de-embed the side1 resp. side2 errorbox (default: True) NRP_enable : set to enforce the Nyquist Rate Point during de-embedding and to add the appropriote delay to the errorboxes (default: True) leadin : a number of discrete points before t = 0 that are non-zero from calibration error (default: 1) verbose : view the process (default: False) args, kwargs: passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.s2xthru = dummy_2xthru.copy() self.sfix_dut_fix = dummy_fix_dut_fix.copy() dummies = [self.s2xthru] self.z0 = z0 self.port_order = port_order self.bandwidth_limit = bandwidth_limit self.pullback1 = pullback1 self.pullback2 = pullback2 self.side1 = side1 self.side2 = side2 self.NRP_enable = NRP_enable self.leadin = leadin self.verbose = verbose self.flag_DC = False self.flag_df = False # debug outputs self.gamma_dd = None self.x_end_dd = None self.z_side1_dd = None self.z_side2_dd = None self.gamma_cc = None self.x_end_cc = None self.z_side1_cc = None self.z_side2_cc = None IEEEP370.__init__(self, dummies, name, *args, **kwargs) self.se_side1, self.se_side2 = self.split2xthru(self.s2xthru, self.sfix_dut_fix)
[docs] def deembed(self, ntwk: Network) -> Network: """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object FIX-DUT-FIX network from which FIX-1_2 and FIX-3_4 fixtures needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.s2xthru.frequency: warnings.warn('Network frequencies dont match dummy frequencies, attempting overlap.', RuntimeWarning, stacklevel=2) ntwk, s2xthru = overlap_multi([ntwk, self.s2xthru]) se_side1, se_side2 = self.split2xthru(s2xthru, self.sfix_dut_fix) else: se_side1 = self.se_side1 se_side2 = self.se_side2 # check if 4-port if ntwk.nports != 4: raise(ValueError('2xthru has to be a 4-port network.')) # renumber if required if self.port_order == 'first': N = ntwk.nports old_order = list(range(N)) new_order = list(range(0, N, 2)) + list(range(1, N, 2)) ntwk.renumber(old_order, new_order) elif self.port_order == 'third': N = ntwk.nports old_order = list(range(N)) new_order = list(range(0, N//2)) + list(range(N-1, N//2-1, -1)) ntwk.renumber(old_order, new_order) deembedded = se_side1.inv ** ntwk ** se_side2.flipped().inv #renumber back if required if self.port_order != 'second': deembedded.renumber(new_order, old_order) return deembedded
[docs] def split2xthru(self, se_2xthru: Network, se_fdf: Network) -> (Network, Network): """ Perform the fixtures extraction. """ # check if 4-port if se_2xthru.nports != 4 or se_fdf.nports != 4: raise(ValueError('2xthru has to be a 4-port network.')) # renumber if required if self.port_order == 'first': N = se_2xthru.nports old_order = list(range(N)) new_order = list(range(0, N, 2)) + list(range(1, N, 2)) se_2xthru.renumber(old_order, new_order) se_fdf.renumber(old_order, new_order) elif self.port_order == 'third': N = se_2xthru.nports old_order = list(range(N)) new_order = list(range(0, N//2)) + list(range(N-1, N//2-1, -1)) se_2xthru.renumber(old_order, new_order) se_fdf.renumber(old_order, new_order) #convert to mixed-modes mm_2xthru = se_2xthru.copy() mm_2xthru.se2gmm(p = 2) mm_fdf = se_fdf.copy() mm_fdf.se2gmm(p = 2) #extract common and differential mode and model fixtures for each sdd = subnetwork(mm_2xthru, [0, 1]) scc = subnetwork(mm_2xthru, [2, 3]) sdd_fdf = subnetwork(mm_fdf, [0, 1]) scc_fdf = subnetwork(mm_fdf, [2, 3]) dm_dd = IEEEP370_SE_ZC_2xThru(dummy_2xthru = sdd, dummy_fix_dut_fix = sdd_fdf, z0 = self.z0 * 2, bandwidth_limit = self.bandwidth_limit, pullback1 = self.pullback1, pullback2 = self.pullback2, side1 = self.side1, side2 = self.side2, NRP_enable = self.NRP_enable, leadin = self.leadin, verbose = self.verbose) # debug outputs self.gamma_dd = dm_dd.gamma self.x_end_dd = dm_dd.x_end self.z_side1_dd = dm_dd.z_side1 self.z_side2_dd = dm_dd.z_side2 dm_cc = IEEEP370_SE_ZC_2xThru(dummy_2xthru = scc, dummy_fix_dut_fix = scc_fdf, z0 = self.z0 / 2, bandwidth_limit = self.bandwidth_limit, pullback1 = self.pullback1, pullback2 = self.pullback2, side1 = self.side1, side2 = self.side2, NRP_enable = self.NRP_enable, leadin = self.leadin, verbose = self.verbose) # debug outputs self.gamma_cc = dm_cc.gamma self.x_end_cc = dm_cc.x_end self.z_side1_cc = dm_cc.z_side1 self.z_side2_cc = dm_cc.z_side2 #convert back to single-ended mm_side1 = concat_ports([dm_dd.s_side1, dm_cc.s_side1], port_order = 'first') se_side1 = mm_side1.copy() se_side1.gmm2se(p = 2) mm_side2 = concat_ports([dm_dd.s_side2, dm_cc.s_side2], port_order = 'first') se_side2 = mm_side2.copy() se_side2.gmm2se(p = 2) return (se_side1, se_side2)
[docs] def plot_check_residuals(self, ax: Axes = None) -> (Figure, Axes): res = self.deembed(self.s2xthru) res.name = 'Residuals' res.se2gmm(p=2) if ax is None: fig, ax = subplots(1, 2, sharex = True, figsize=(10, 5)) else: fig = ax.get_figure() fig.suptitle('Consistency test #1: Self de-embedding of 2X-Thru') ax[0].set_title('Magnitude residuals') res.plot_s_db(1,0, ax = ax[0]) res.plot_s_db(0,1, ax = ax[0]) res.plot_s_db(3,2, ax = ax[0]) res.plot_s_db(2,3, ax = ax[0]) ax[0].plot([res.frequency.f[0], res.frequency.f[-1]], [0.1, 0.1], linestyle = 'dashed', color = 'r', label = 'Limit') ax[0].plot([res.frequency.f[0], res.frequency.f[-1]], [-0.1, -0.1], linestyle = 'dashed', color = 'r') ax[0].legend(loc = 'upper right') ax[1].set_title('Phase residuals') res.plot_s_deg(1,0, ax = ax[1]) res.plot_s_deg(0,1, ax = ax[1]) res.plot_s_deg(3,2, ax = ax[1]) res.plot_s_deg(2,3, ax = ax[1]) ax[1].plot([res.frequency.f[0], res.frequency.f[-1]], [1, 1], linestyle = 'dashed', color = 'r', label = 'Limit') ax[1].plot([res.frequency.f[0], res.frequency.f[-1]], [-1, -1], linestyle = 'dashed', color = 'r') ax[1].legend(loc = 'upper right') fig.tight_layout() return (fig, ax)
[docs] def plot_check_impedance(self, fix_dut_fix: Network = None, ax: Axes = None, window: str = 'hamming') -> (Figure, Axes): # if dc point already exists, it will be replaced s2xthru = self.s2xthru.copy() s2xthru.se2gmm(p=2) s2xthru = IEEEP370.extrapolate_to_dc(s2xthru) fix1 = self.se_side1.copy() fix1.se2gmm(p=2) fix1 = IEEEP370.extrapolate_to_dc(fix1) fix2 = self.se_side2.copy() fix2.se2gmm(p=2) fix2 = IEEEP370.extrapolate_to_dc(fix2) if fix_dut_fix is not None: fix_dut_fix = fix_dut_fix.copy() fix_dut_fix.se2gmm(p=2) fix_dut_fix = IEEEP370.extrapolate_to_dc(fix_dut_fix) else: fix_dut_fix = self.sfix_dut_fix.copy() fix_dut_fix.se2gmm(p=2) fix_dut_fix = IEEEP370.extrapolate_to_dc(fix_dut_fix) n = s2xthru.frequency.npoints * 2 - 1 dt = 1e9 / (n * s2xthru.frequency.step) # ns if ax is None: fig, ax = subplots(1, 2, sharex = True, figsize=(10, 5)) else: fig = ax.get_figure() fig.suptitle('Consistency test #2: Compare the TDR of the fixture model to the FIX-DUT-FIX') ax[0].set_title('Side 1') fix1.plot_z_time_step(0, 0, window = window, ax = ax[0], color = 'k') y = ax[0].lines[-1].get_ydata() s2xthru.plot_z_time_step(0, 0, window = window, ax = ax[0], linestyle = 'dotted', color = '0.2') fix_dut_fix.plot_z_time_step(0, 0, window = window, ax = ax[0], linestyle = 'dashed', color = 'm') ax[0].plot([-self.leadin * dt], [y[n // 2 - self.leadin]], marker = 's', color = 'k', label = f'start (leadin = {self.leadin})') ax[0].plot([self.x_end_dd * dt], [y[self.x_end_dd + n // 2]], marker = 'o', color = 'k', label = f'end (pullback1 = {self.pullback1})') fix1.plot_z_time_step(2, 2, window = window, ax = ax[0], color = 'k') s2xthru.plot_z_time_step(2, 2, window = window, ax = ax[0], linestyle = 'dotted', color = '0.2') fix_dut_fix.plot_z_time_step(2, 2, window = window, ax = ax[0], linestyle = 'dashed', color = 'b') ax[0].legend(loc = 'center left') ax[1].set_title('Side 2') fix2.plot_z_time_step(0, 0, window = window, ax = ax[1], color = 'k') y = ax[1].lines[-1].get_ydata() s2xthru.plot_z_time_step(1, 1, window = window, ax = ax[1], linestyle = 'dotted', color = '0.2') fix_dut_fix.plot_z_time_step(1, 1, window = window, ax = ax[1], linestyle = 'dashed', color = 'm') ax[1].plot([-self.leadin * dt], [y[n // 2 - self.leadin]], marker = 's', color = 'k', label = f'start (leadin = {self.leadin})') ax[1].plot([self.x_end_dd * dt], [y[self.x_end_dd + n // 2]], marker = 'o', color = 'k', label = f'end (pullback2 = {self.pullback2})') fix2.plot_z_time_step(2, 2, window = window, ax = ax[1], color = 'k') s2xthru.plot_z_time_step(3, 3, window = window, ax = ax[1], linestyle = 'dotted', color = '0.2') fix_dut_fix.plot_z_time_step(3, 3, window = window, ax = ax[1], linestyle = 'dashed', color = 'b') delay = 2 * self.x_end_dd * dt ax[1].set_xlim((-0.5 * delay, 1.5 * delay)) ax[1].legend(loc = 'center left') fig.tight_layout() return (fig, ax)