skrf.media.mline.MLine
- class skrf.media.mline.MLine(frequency=None, z0_port=None, z0_override=None, z0=None, w=3, h=1.6, t=None, ep_r=4.5, mu_r=1.0, model='hammerstadjensen', disp='kirschningjansen', diel='djordjevicsvensson', rho=1.68e-08, tand=0, rough=1.5e-07, f_low=1000.0, f_high=1000000000000.0, f_epr_tand=1000000000.0, compatibility_mode=None, *args, **kwargs)[source]
A microstripline transmission line defined in terms of width, thickness and height on a given relative permittivity substrate. The line has a conductor resistivity and a tangential loss factor.
This class is highly inspired from the technical documentation [1] and sources provided by the qucs project [2] .
In addition, Djordjevic [3] /Svensson [4] wideband debye dielectric model is considered to provide more realistic modelling of broadband microstrip with as causal time domain response.
A compatibility mode is provided to mimic the behaviour of QUCS or of Keysight ADS. There is known differences in the output of these simulators.
The quasi-static models of chercteristic impedance and effective permittivity give the value at zero frequency. The dispersion models compute a frequency-dependant values of these variables.
Quasi-static characteristic impedance and effective permittivity models:
Hammerstad and Jensen (default)
Schneider
Wheeler
Frequency dispersion of impedance and effective permittivity models:
Hammerstad and Jensen
Kirschning and Jansen (default)
Kobayashi
Schneider
Yamashita
(No dispersion)
Strip thickness correction model:
all quasi-static models add a certain amount to W to accound for non-zero thickness of the strip. Computation with zero thickness is possible.
- Parameters:
frequency (
Frequency
object) – frequency band of the mediaz0_port (number, array-like, or None) – z0_port is the port impedance for networks generated by the media. If z0_port is not None, the networks generated by the media are renormalized (or in other words embedded) from the characteristic impedance z0 of the media to z0_port. Else if z0_port is None, the networks port impedances will be the raw characteristic impedance z0 of the media. (Default is None)
z0_override (number, array-like, or None) – z0_override override the characteristic impedance for the media. If z0_override is not None, the networks generated by the media have their characteristic impedance z0 overrided by z0_override. (Default is None)
z0 (number, array-like, or None) – deprecated parameter, alias to z0_override if z0_override is None. Emmit a deprecation warning.
w (number, or array-like) – width of conductor, in m
h (number, or array-like) – height of substrate between ground plane and conductor, in m
t (number, or array-like or None, optional) – conductor thickness, in m. Default is None (no width correction to account strip thickness).
ep_r (number, or array-like) – relative permittivity of dielectric at frequency f_epr_tand, no unit
mu_r (number, array-like) – relative permeability mof dielectric, no unit
model (str) –
microstripline quasi-static impedance and dielectric model in:
’hammerstadjensen’ (default)
’schneider’
’wheeler’
disp (str) –
microstripline impedance and dielectric frequency dispersion model in:
’hammerstadjensen’
’kirschningjansen’ (default)
’kobayashi’
’schneider’
’yamashita’
’none’
diel (str) –
dielectric frequency dispersion model in:
’djordjevicsvensson’ (default)
’frequencyinvariant’
rho (number, or array-like, optional) – resistivity of conductor, ohm / m
tand (number, or array-like) – dielectric loss factor at frequency f_epr_tand
rough (number, or array-like) – RMS roughness of conductor in m
f_low (number, or array-like) – lower frequency for wideband Debye Djordjevic/Svensson dielectric model, in Hz
f_high (number, or array-like) – higher frequency for wideband Debye Djordjevic/Svensson dielectric model, in Hz
f_epr_tand (number, or array-like) – measurement frequency for ep_r and tand of dielectric, in Hz
compatibility_mode (str or None (default)) –
If set to ‘qucs’, following behavious happens :
Characteristic impedance will be real (no imaginary part due to tand)
Quasi-static relative permittivity and impedance will by used for loss computation instead of frequency-dispersed values
Kobayashi and Yamashita models will disperse permittivity but keep quasi-static impedance values
*args (arguments, keyword arguments) – passed to
Media
’s constructor (__init__()
**kwargs (arguments, keyword arguments) – passed to
Media
’s constructor (__init__()
Note
In the case dispersion model only include effective permittivity, no dispersion is used for impedance in QUCS mode and Kirschning Jansen is used in ADS mode. QUCS mode is the default.
When the thickness of the strip is smaller than 3 skin depth, the losses model gives over-optimistic results and the media will issue a warning. At DC, the losses of the line could be smaller than its conductor resistance, which is not physical.
References
Attributes
Characteristic Impedance |
|
Alias fos Characteristic Impedance for backward compatibility. |
|
Real (attenuation) component of gamma. |
|
Imaginary (propagating) component of gamma. |
|
Propagation constant. |
|
Number of points of the frequency axis. |
|
Complex group velocity (in m/s). |
|
Complex phase velocity (in m/s). |
|
Return Characteristic Impedance z0_characteristic. |
|
Characteristic Impedance, \(z_0\) |
|
Port Impedance. |
|
Port Impedance. |
Methods
This function calculate the frequency dependent relative permittivity of dielectric and and tangeantial loss factor. |
|
This function compute the frequency dependent characteristic impedance and effective permittivity accounting for microstripline frequency dispersion. |
|
The function calculates the conductor and dielectric losses of a single microstrip line using wheeler's incremental inductance rule. |
|
This function calculates the quasi-static impedance of a microstrip line, the value of the effective permittivity as per filling factor and the effective width due to the finite conductor thickness for the given microstrip line and substrate properties. |
|
Ideal matched attenuator of a given length. |
|
Capacitor. |
|
Capacitor with Q factor. |
|
Copy of this Media object. |
|
Delayed load. |
|
Delayed open transmission line. |
|
Delayed Short. |
|
Calculate the complex electrical length for a given distance. |
|
Determines physical distance from a transmission or reflection Network. |
|
Two-port network for an impedance mismatch. |
|
Inductor. |
|
Inductor with Q factor. |
|
Two-port isolator. |
|
Transmission line of a given length and impedance. |
|
Floating transmission line of a given length and impedance. |
|
Load of given reflection coefficient. |
|
Lossless, symmetric mismatch defined by its return loss. |
|
Perfect matched load (\(\Gamma_0 = 0\)). |
|
Create another mode in this medium. |
|
Open (\(\Gamma_0 = 1\)). |
|
Complex random network. |
|
Resistor. |
|
Short (\(\Gamma_0 = -1\)) |
|
Shunts a |
|
Shunted capacitor. |
|
Shunted delayed load. |
|
Shunted delayed open. |
|
Shunted delayed short. |
|
Shunted inductor. |
|
Shunted resistor. |
|
Ideal, lossless n-way splitter. |
|
Ideal, lossless tee. |
|
Convert electrical length to physical distance. |
|
Matched transmission line of length 0. |
|
Translate various units of distance into meters. |
|
Complex zero-mean gaussian white-noise network. |
|
write this media's frequency, gamma, Z0, and z0 to a csv file. |