"""
.. module:: skrf.network
========================================
network (:mod:`skrf.network`)
========================================
Provide an n-port network class and associated functions.
Much of the functionality in this module is provided as methods and
properties of the :class:`Network` Class.
Network Class
===============
.. autosummary::
:toctree: generated/
Network
Building Network
----------------
.. autosummary::
:toctree: generated/
Network.from_z
Network Representations
============================
.. autosummary::
:toctree: generated/
Network.s
Network.z
Network.y
Network.a
Network.t
Connecting Networks
===============================
.. autosummary::
:toctree: generated/
connect
innerconnect
cascade
cascade_list
de_embed
flip
Interpolation and Concatenation Along Frequency Axis
=====================================================
.. autosummary::
:toctree: generated/
stitch
overlap
Network.resample
Network.interpolate
Network.interpolate_self
Combining and Splitting Networks
===================================
.. autosummary::
:toctree: generated/
subnetwork
one_port_2_two_port
n_oneports_2_nport
four_oneports_2_twoport
three_twoports_2_threeport
n_twoports_2_nport
concat_ports
IO
====
.. autosummary::
skrf.io.general.read
skrf.io.general.write
skrf.io.general.network_2_spreadsheet
Network.write
Network.write_touchstone
Network.read
Network.write_spreadsheet
Noise
============
.. autosummary::
:toctree: generated/
Network.add_noise_polar
Network.add_noise_polar_flatband
Network.multiply_noise
Supporting Functions
======================
.. autosummary::
:toctree: generated/
inv
connect_s
innerconnect_s
s2z
s2y
s2t
s2a
s2h
z2s
z2y
z2t
z2a
y2s
y2z
y2t
t2s
t2z
t2y
h2s
h2z
fix_z0_shape
renormalize_s
passivity
reciprocity
Misc Functions
=====================
.. autosummary::
:toctree: generated/
average
two_port_reflect
chopinhalf
Network.nudge
Network.renormalize
Network.drop_non_monotonic_increasing
"""
from typing import (Any, NoReturn, Optional, Sequence,
Sized, Union, Tuple, Callable, TYPE_CHECKING, Dict, List, TextIO)
from numbers import Number
from functools import reduce, lru_cache
import os
import warnings
import io
from pathlib import Path
from pickle import UnpicklingError
import re
import zipfile
from copy import deepcopy as copy
from itertools import product
import numpy as npy
from numpy.linalg import inv as npy_inv
from numpy import gradient, ndarray, shape
from scipy import stats, signal # for Network.add_noise_*, and Network.windowed
from scipy.interpolate import interp1d # for Network.interpolate()
from . import mathFunctions as mf
from .frequency import Frequency
from .util import get_fid, get_extn, find_nearest_index
from .time import time_gate
from .constants import NumberLike, ZERO, K_BOLTZMANN, T0
from .constants import S_DEFINITIONS, S_DEF_DEFAULT, S_DEF_HFSS_DEFAULT
if TYPE_CHECKING:
import pandas as pd
[docs]class Network:
r"""
An n-port electrical network.
For instructions on how to create Network see :func:`__init__`.
An n-port network [#TwoPortWiki]_ may be defined by three quantities
* network parameter matrix (s, z, or y-matrix)
* port characteristic impedance matrix
* frequency information
The :class:`Network` class stores these data structures internally
in the form of complex :class:`numpy.ndarray`'s. These arrays are not
interfaced directly but instead through the use of the properties:
===================== =============================================
Property Meaning
===================== =============================================
:attr:`s` Scattering parameter matrix.
:attr:`z0` Characteristic impedance matrix.
:attr:`f` Frequency vector.
===================== =============================================
Although these docs focus on s-parameters, other equivalent network
representations such as :attr:`z` and :attr:`y` are
available. Scalar projections of the complex network parameters
are accessible through properties as well. These also return
:class:`numpy.ndarray`'s.
===================== =============================================
Property Meaning
===================== =============================================
:attr:`s_re` Real part of the s-matrix.
:attr:`s_im` Imaginary part of the s-matrix.
:attr:`s_mag` Magnitude of the s-matrix.
:attr:`s_db` Magnitude in log scale of the s-matrix.
:attr:`s_deg` Phase of the s-matrix in degrees.
===================== =============================================
The following operations act on the networks s-matrix.
===================== =============================================
Operator Function
===================== =============================================
\+ Element-wise addition of the s-matrix.
\- Element-wise difference of the s-matrix.
\* Element-wise multiplication of the s-matrix.
\/ Element-wise division of the s-matrix.
\*\* Cascading (only for 2-ports).
\// De-embedding (for 2-ports, see :attr:`inv`).
===================== =============================================
Different components of the :class:`Network` can be visualized
through various plotting methods. These methods can be used to plot
individual elements of the s-matrix or all at once. For more info
about plotting see the :doc:`../../tutorials/Plotting` tutorial.
========================= =============================================
Method Meaning
========================= =============================================
:func:`plot_s_smith` Plot complex s-parameters on smith chart.
:func:`plot_s_re` Plot real part of s-parameters vs frequency.
:func:`plot_s_im` Plot imaginary part of s-parameters vs frequency.
:func:`plot_s_mag` Plot magnitude of s-parameters vs frequency.
:func:`plot_s_db` Plot magnitude (in dB) of s-parameters vs frequency.
:func:`plot_s_deg` Plot phase of s-parameters (in degrees) vs frequency.
:func:`plot_s_deg_unwrap` Plot phase of s-parameters (in unwrapped degrees) vs frequency.
========================= =============================================
:class:`Network` objects can be created from a touchstone or pickle
file (see :func:`__init__`), by a
:class:`~skrf.media.media.Media` object, or manually by assigning the
network properties directly. :class:`Network` objects
can be saved to disk in the form of touchstone files with the
:func:`write_touchstone` method.
An exhaustive list of :class:`Network` Methods and Properties
(Attributes) are given below
References
----------
.. [#TwoPortWiki] http://en.wikipedia.org/wiki/Two-port_network
"""
PRIMARY_PROPERTIES = ['s', 'z', 'y', 'a', 'h', 't']
"""
Primary Network Properties list like 's', 'z', 'y', etc.
"""
COMPONENT_FUNC_DICT = {
're': npy.real,
'im': npy.imag,
'mag': npy.abs,
'db': mf.complex_2_db,
'db10': mf.complex_2_db10,
'rad': npy.angle,
'deg': lambda x: npy.angle(x, deg=True),
'arcl': lambda x: npy.angle(x) * npy.abs(x),
'rad_unwrap': lambda x: mf.unwrap_rad(npy.angle(x)),
'deg_unwrap': lambda x: mf.radian_2_degree(mf.unwrap_rad( \
npy.angle(x))),
'arcl_unwrap': lambda x: mf.unwrap_rad(npy.angle(x)) * \
npy.abs(x),
'vswr': lambda x: (1 + abs(x)) / (1 - abs(x)),
'time': mf.ifft,
'time_db': lambda x: mf.complex_2_db(mf.ifft(x)),
'time_mag': lambda x: mf.complex_2_magnitude(mf.ifft(x)),
'time_impulse': None,
'time_step': None,
}
"""
Component functions like 're', 'im', 'mag', 'db', etc.
"""
@classmethod
@lru_cache()
def _generated_functions(cls) -> Dict[str, Tuple[Callable, str, str]]:
return {f"{p}_{func_name}": (func, p, func_name)
for p in cls.PRIMARY_PROPERTIES
for func_name, func in cls.COMPONENT_FUNC_DICT.items()}
# provides y-axis labels to the plotting functions
Y_LABEL_DICT = {
're': 'Real Part',
'im': 'Imag Part',
'mag': 'Magnitude',
'abs': 'Magnitude',
'db': 'Magnitude (dB)',
'db10': 'Magnitude (dB)',
'deg': 'Phase (deg)',
'deg_unwrap': 'Phase (deg)',
'rad': 'Phase (rad)',
'rad_unwrap': 'Phase (rad)',
'arcl': 'Arc Length',
'arcl_unwrap': 'Arc Length',
'gd': 'Group Delay (s)',
'vswr': 'VSWR',
'passivity': 'Passivity',
'reciprocity': 'Reciprocity',
'time': 'Time (real)',
'time_db': 'Magnitude (dB)',
'time_mag': 'Magnitude',
'time_impulse': 'Magnitude',
'time_step': 'Magnitude',
}
"""
Y-axis labels to the plotting functions.
"""
noise_interp_kind = 'linear'
"""
Default interpolation method.
"""
# CONSTRUCTOR
[docs] def __init__(self, file: str = None, name: str = None, params: dict = None,
comments: str = None, f_unit: str = None,
s_def: Union[str, None] = None, **kwargs) -> None:
r"""
Network constructor.
Creates an n-port microwave network from a `file` or directly
from data. If no file or data is given, then an empty Network
is created.
Parameters
----------
file : str or file-object
file to load information from. supported formats are:
* touchstone file (.s?p) (or .ts)
* io.StringIO object (with `.name` property which contains the file extension, such as `myfile.s4p`)
* pickled Network (.ntwk, .p) see :func:`write`
name : str, optional
Name of this Network. if None will try to use file, if it is a str
params : dict, optional
Dictionnary of parameters associated with the Network
comments : str, optional
Comments associated with the Network
s_def : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition : 'power' for power-waves definition,
'pseudo' for pseudo-waves definition.
'traveling' corresponds to the initial implementation.
Default is 'power'.
NB: results are the same for real-valued characteristic impedances.
\*\*kwargs :
key word arguments can be used to assign properties of the
Network, such as `s`, `f` and `z0`.
keyword `encoding` can be used to define the Touchstone file encoding.
Examples
--------
From a touchstone
>>> n = rf.Network('ntwk1.s2p')
From a pickle file
>>> n = rf.Network('ntwk1.ntwk')
Create a blank network, then fill in values
>>> n = rf.Network()
>>> freq = rf.Frequency(1, 3, 3, 'ghz')
>>> n.frequency, n.s, n.z0 = freq, [1,2,3], [1,2,3]
Directly from values
>>> n = rf.Network(f=[1,2,3], s=[1,2,3], z0=[1,2,3])
Define some parameters associated with the Network
>>> n = rf.Network('ntwk1.s2p', params={'temperature': 25, 'voltage':5})
See Also
--------
from_z : init from impedance values
read : read a network from a file
write : write a network to a file, using pickle
write_touchstone : write a network to a touchstone file
"""
# allow for old kwarg for backward compatibility
if 'touchstone_filename' in kwargs:
file = kwargs['touchstone_filename']
self.name = name
self.params = params
self.comments = comments
self.port_names = None
self.encoding = kwargs.pop('encoding', None)
self.deembed = None
self.noise = None
self.noise_freq = None
self._z0 = npy.array(50, dtype=complex)
if s_def not in S_DEFINITIONS and s_def is not None:
raise ValueError('s_def parameter should be either:', S_DEFINITIONS)
else:
self.s_def = s_def
if file is not None:
if isinstance(file, Path):
file = str(file.resolve())
# allows user to pass StringIO, filename or file obj
if isinstance(file, io.StringIO):
self.read_touchstone(file, self.encoding)
else:
# open file in 'binary' mode because we are going to try and
# unpickle it first
fid = get_fid(file, 'rb')
try:
self.read(fid)
except UnicodeDecodeError: # Support for pickles created in Python2 and loaded in Python3
self.read(fid, encoding='latin1')
except (UnpicklingError, TypeError):
# if unpickling doesn't work then, close fid, reopen in
# non-binary mode and try to read it as touchstone
filename = fid.name
fid.close()
self.read_touchstone(filename, self.encoding)
if not fid.closed:
fid.close()
if name is None and isinstance(file, str):
name = os.path.splitext(os.path.basename(file))[0]
if self.frequency is not None and f_unit is not None:
self.frequency.unit = f_unit
# S-param definition. Done *after* reading data,
# where the S-param definition may have been guessed.
if self.s_def is None: # not guessed
self.s_def = S_DEF_DEFAULT
# Check for multiple attributes
params = [attr for attr in PRIMARY_PROPERTIES if attr in kwargs]
if len(params) > 1:
raise ValueError(f'Multiple input parameters provided: {params}')
# When initializing Network from different parameters than s
# we need to make sure that z0 has been set first because it will be
# needed in conversion to S-parameters. s is initialized with zeros here,
# to determine the correct z0 shape afterwards.
if params:
s_shape = npy.array(kwargs[params[0]]).shape
self.s = npy.zeros(s_shape, dtype=complex)
self.z0 = kwargs.get('z0', self._z0)
if "f" in kwargs.keys():
if f_unit is None:
f_unit = "ghz"
kwargs["frequency"] = Frequency.from_f(kwargs.pop("f"), unit=f_unit)
for attr in PRIMARY_PROPERTIES + ['frequency', 'noise', 'noise_freq']:
if attr in kwargs:
self.__setattr__(attr, kwargs[attr])
[docs] @classmethod
def from_z(cls, z: npy.ndarray, *args, **kw) -> 'Network':
r"""
Create a Network from its Z-parameters.
Parameters
----------
z : Numpy array
Impedance matrix. Should be of shape fxnxn,
where f is frequency axis and n is number of ports
\*\*kwargs :
key word arguments can be used to assign properties of the
Network, `f` and `z0`.
Returns
-------
ntw : :class:`Network`
Created Network
Examples
--------
>>> f = rf.Frequency(start=1, stop=2, npoints=4) # 4 frequency points
>>> z = np.random.rand(len(f),2,2) + np.random.rand(len(f),2,2)*1j # 2-port z-matrix: shape=(4,2,2)
>>> ntw = rf.Network.from_z(z, f=f)
"""
s = npy.zeros(shape=z.shape)
me = cls(s=s, *args, **kw)
me.z = z
return me
# OPERATORS
def __pow__(self, other: 'Network') -> 'Network':
"""
Cascade this network with another network.
Returns
-------
ntw : :class:`Network`
Cascaded Network
See Also
--------
cascade
"""
check_frequency_exist(self)
# if they pass a number then use power operator
if isinstance(other, Number):
out = self.copy()
out.s = out.s ** other
return out
else:
return cascade(self, other)
def __rshift__(self, other: 'Network') -> 'Network':
"""
Cascade two 4-port networks with "1=>2/3=>4" port numbering.
Note
----
connection diagram::
A B
+---------+ +---------+
-|0 1|---|0 1|-
-|2 3|---|1 3|-
... ... ... ...
-|2N-4 2N-3|---|2N-4 2N-3|-
-|2N-2 2N-1|---|2N-2 2N-1|-
+---------+ +---------+
Returns
-------
ntw : :class:`Network`
Cascaded Network
See Also
--------
cascade
"""
check_nports_equal(self, other)
check_frequency_exist(self)
(n,_) = shape(self.s[0])
if (n / 2) != (n // 2):
raise ValueError("Operator >> requires an even number of ports.")
ix_old = list(range(n))
n_2 = n//2
n_2_1 = list(range(n_2))
ix_new = list(sum(zip(n_2_1, list(map((lambda x: x + n_2), n_2_1))), ()))
_ntwk1 = self.copy()
_ntwk1.renumber(ix_old,ix_new)
_ntwk2 = other.copy()
_ntwk2.renumber(ix_old,ix_new)
_rslt = _ntwk1 ** _ntwk2
_rslt.renumber(ix_new,ix_old)
return _rslt
def __floordiv__(self, other: Union['Network', Tuple['Network', ...]] ) -> 'Network':
"""
De-embedding 1 or 2 network[s], from this network.
:param other: skrf.Network, list, tuple: Network(s) to de-embed
:return: skrf.Network: De-embedded network
Returns
-------
ntw : :class:`Network`
See Also
--------
inv : inverse s-parameters
"""
if isinstance(other, (list, tuple)):
if len(other) >= 3:
warnings.warn(
"Number of networks greater than 2. Truncating!",
RuntimeWarning
)
other_tpl = other[:2]
else:
other_tpl = (other, )
for o in other_tpl:
if o.number_of_ports != 2:
raise IndexError(f'Incorrect number of ports in network {o.name}.')
if len(other_tpl) == 1:
# if passed 1 network (A) and another network B
# e.g. A // B
# e.g. A // (B)
# then de-embed like B.inv * A
b = other_tpl[0]
result = self.copy()
result.s = (b.inv ** self).s
# de_embed(self.s, b.s)
return result
else:
# if passed 1 network (A) and a list/tuple of 2 networks (B, C),
# e.g. A // (B, C)
# e.g. A // [B, C]
# then de-embed like B.inv * A * C.inv
b = other_tpl[0]
c = other_tpl[1]
result = self.copy()
result.s = (b.inv ** self ** c.inv).s
# flip(de_embed(flip(de_embed(c.s, self.s)), b.s))
return result
def __mul__(self, other:'Network') -> 'Network':
"""
Element-wise complex multiplication of s-matrix.
Returns
-------
ntw : :class:`Network`
"""
check_frequency_exist(self)
result = self.copy()
if isinstance(other, Network):
self.__compatable_for_scalar_operation_test(other)
result.s = self.s * other.s
else:
# other may be an array or a number
result.s = self.s * npy.asarray(other).reshape(-1, self.nports, self.nports)
return result
def __rmul__(self, other: 'Network') -> 'Network':
"""
Element-wise complex multiplication of s-matrix.
Returns
-------
ntw : :class:`Network`
"""
result = self.copy()
if isinstance(other, Network):
self.__compatable_for_scalar_operation_test(other)
result.s = self.s * other.s
else:
# other may be an array or a number
result.s = self.s * npy.asarray(other).reshape(-1, self.nports, self.nports)
return result
def __add__(self, other:'Network') -> 'Network':
"""
Element-wise complex addition of s-matrix.
Returns
-------
ntw : :class:`Network`
"""
result = self.copy()
if isinstance(other, Network):
self.__compatable_for_scalar_operation_test(other)
result.s = self.s + other.s
else:
# other may be an array or a number
result.s = self.s + npy.asarray(other).reshape(-1, self.nports, self.nports)
return result
def __radd__(self, other:'Network') -> 'Network':
"""
Element-wise complex addition of s-matrix.
Returns
-------
ntw : :class:`Network`
"""
result = self.copy()
if isinstance(other, Network):
self.__compatable_for_scalar_operation_test(other)
result.s = self.s + other.s
else:
# other may be an array or a number
result.s = self.s + npy.asarray(other).reshape(-1, self.nports, self.nports)
return result
def __sub__(self, other:'Network') -> 'Network':
"""
Element-wise complex subtraction of s-matrix.
"""
result = self.copy()
if isinstance(other, Network):
self.__compatable_for_scalar_operation_test(other)
result.s = self.s - other.s
else:
# other may be an array or a number
result.s = self.s - npy.asarray(other).reshape(-1, self.nports, self.nports)
return result
def __rsub__(self, other:'Network') -> 'Network':
"""
Element-wise complex subtraction of s-matrix.
Returns
-------
ntw : :class:`Network`
"""
result = self.copy()
if isinstance(other, Network):
self.__compatable_for_scalar_operation_test(other)
result.s = other.s - self.s
else:
# other may be an array or a number
result.s = npy.asarray(other).reshape(-1, self.nports, self.nports) - self.s
return result
def __truediv__(self, other: 'Network') -> 'Network':
return self.__div__(other)
def __div__(self, other: 'Network') -> 'Network':
"""
Element-wise complex division of s-matrix.
Returns
-------
ntw : :class:`Network`
"""
result = self.copy()
if isinstance(other, Network):
self.__compatable_for_scalar_operation_test(other)
result.s = self.s / other.s
else:
# other may be an array or a number
result.s = self.s / npy.asarray(other).reshape(-1, self.nports, self.nports)
return result
def __eq__(self, other: object) -> bool:
if not isinstance(other, self.__class__):
return False
if npy.all(npy.abs(self.s - other.s) < ZERO):
return True
else:
return False
def __ne__(self, other:object) -> bool:
return (not self.__eq__(other))
def __getitem__(self, key:Union[str, int, slice, Sized]) -> 'Network':
"""
Slice a Network object based on an index, or human readable string.
Parameters
----------
key : str, or slice
if slice; like [2-10] then it is interpreted as the index of
the frequency.
if str, then should be like '50.1-75.5ghz', or just '50'.
If the frequency unit is omitted then self.frequency.unit is
used. This will also accept a 2 or 3 dimensional index of the
forms:
port1, port2
key, port1, port2
where port1 and port2 are allowed to be string port names if
the network has them defined (Network.port_names)
If port1 and port2 are integers, will return the single-port
network based on matrix notation (indices starts at 1 not 0)
Returns
-------
ntwk : skrf.Network
interpolated in frequency if single dimension provided
OR
1-port network if multi-dimensional index provided
Examples
--------
>>> from skrf.data import ring_slot
>>> a = ring_slot['80-90ghz']
>>> a.plot_s_db()
Multidimensional indexing:
>>> import skrf as rf
>>> b = rf.Network("sometouchstonefile.s2p")
>>> c = b['80mhz', 'first_port_name', 'second_port_name']
>>> d = b['first_port_name', 'second_port_name']
Equivalently:
>>> d = b[1,2]
Equivalent to:
>>> d = b.s12
"""
a = self.z0 # HACK: to force getter for z0 to re-shape it (z0 getter has side effects...)
# If user passes a multidimensional index, try to return that 1 port subnetwork
if isinstance(key, tuple):
if len(key) == 3:
slice_like, p1_name, p2_name = key
return self[slice_like][p1_name, p2_name]
elif len(key) == 2:
p1_name, p2_name = key
if type(p1_name) == int and type(p2_name) == int: # allow integer indexing if desired
if p1_name <= 0 or p2_name <= 0 or p1_name > self.nports or p2_name > self.nports:
raise ValueError("Port index out of bounds")
p1_index = p1_name - 1
p2_index = p2_name - 1
else:
if self.port_names is None:
raise ValueError("Can't index without named ports")
try:
p1_index = self.port_names.index(p1_name)
except ValueError as e:
raise KeyError(f"Unknown port {p1_name}")
try:
p2_index = self.port_names.index(p2_name)
except ValueError as e:
raise KeyError(f"Unknown port {p2_name}")
ntwk = self.copy()
ntwk.s = self.s[:, p1_index, p2_index]
ntwk.z0 = self.z0[:, p1_index]
ntwk.name = f"{self.name}({p1_name}, {p2_name})"
ntwk.port_names = None
return ntwk
else:
raise ValueError(f"Don't understand index: {key}")
sliced_frequency = self.frequency[key]
return self.interpolate(sliced_frequency)
if isinstance(key, str):
sliced_frequency = self.frequency[key]
return self.interpolate(sliced_frequency)
if isinstance(key, Frequency):
return self.interpolate(key)
# The following avoids interpolation when the slice is done directly with indices
ntwk = self.copy_subset(key)
return ntwk
def __str__(self) -> str:
"""
"""
f = self.frequency
if self.name is None:
name = ''
else:
name = self.name
_z0 = self.z0
if _z0.ndim < 2:
z0 = _z0
else:
z0 = self.z0[0, :]
output = '%i-Port Network: \'%s\', %s, z0=%s' % (self.number_of_ports, name, str(f), str(z0))
return output
def __repr__(self) -> str:
return self.__str__()
def __len__(self) -> int:
"""
length of frequency axis
"""
return len(self.s)
# INTERNAL CODE GENERATION METHODS
def __compatable_for_scalar_operation_test(self, other:'Network') -> None:
"""
Test to make sure other network's s-matrix is of same shape.
"""
if other.frequency != self.frequency:
raise IndexError('Networks must have same frequency. See `Network.interpolate`')
if other.s.shape != self.s.shape:
raise IndexError('Networks must have same number of ports.')
def __getattr__(self, name: str) -> 'Network':
m = re.match(r"s(\d+)_(\d+)", name)
if not m:
m = re.match(r"s(\d)(\d)", name)
if m:
t0 = int(m.group(1)) - 1
t1 = int(m.group(2)) - 1
ntwk = self.copy()
ntwk.s = self.s[:, t0, t1]
ntwk.z0 = self.z0[:, t0]
return ntwk
raise AttributeError
def __dir__(self):
ret = super().__dir__()
s_properties = [f"s{t1}_{t2}" for t1 in range(self.nports) for t2 in range(self.nports)]
s_properties += [f"s{t1}{t2}" for t1 in range(min(self.nports, 10)) for t2 in range(min(self.nports, 10))]
return ret + s_properties + list(self._generated_functions().keys())
[docs] def attribute(self, prop_name: str, conversion: str) -> npy.ndarray:
prop = getattr(self, prop_name)
return self.COMPONENT_FUNC_DICT[conversion](prop)
# PRIMARY PROPERTIES
@property
def s(self) -> npy.ndarray:
"""
Scattering parameter matrix.
The s-matrix [#]_ is a 3-dimensional :class:`numpy.ndarray` which has shape
`fxnxn`, where `f` is frequency axis and `n` is number of ports.
Note that indexing starts at 0, so s11 can be accessed by
taking the slice s[:,0,0].
Returns
-------
s : complex :class:`numpy.ndarray` of shape `fxnxn`
The scattering parameter matrix.
See Also
--------
s
y
z
t
a
References
----------
.. [#] http://en.wikipedia.org/wiki/Scattering_parameters
"""
return self._s
@s.setter
def s(self, s: npy.ndarray) -> None:
"""
Scattering parameter matrix.
Parameters
----------
s : :class:`numpy.ndarray`
The input s-matrix should be of shape `fxnxn`,
where f is frequency axis and n is number of ports.
"""
self._s = fix_param_shape(s)
if self.z0.ndim == 0:
self.z0 = self.z0
@property
def s_traveling(self) -> npy.ndarray:
"""
Scattering parameter matrix with s_def = 'traveling'.
Returns
-------
s : complex :class:`numpy.ndarray` of shape `fxnxn`
The scattering parameter matrix.
See Also
--------
s
s_power
s_pseudo
s_traveling
References
----------
.. [#] http://en.wikipedia.org/wiki/Scattering_parameters
"""
return s2s(self._s, self.z0, 'traveling', self.s_def)
@s_traveling.setter
def s_traveling(self, s) -> npy.ndarray:
self.s = s2s(s, self.z0, self.s_def, 'traveling')
@property
def s_power(self) -> npy.ndarray:
"""
Scattering parameter matrix with s_def = 'power'.
Returns
-------
s : complex :class:`numpy.ndarray` of shape `fxnxn`
The scattering parameter matrix.
See Also
--------
s
s_power
s_pseudo
s_traveling
References
----------
.. [#] http://en.wikipedia.org/wiki/Scattering_parameters
"""
return s2s(self._s, self.z0, 'power', self.s_def)
@s_power.setter
def s_power(self, s) -> npy.ndarray:
self.s = s2s(s, self.z0, self.s_def, 'power')
@property
def s_pseudo(self) -> npy.ndarray:
"""
Scattering parameter matrix with s_def = 'pseudo'.
Returns
-------
s : complex :class:`numpy.ndarray` of shape `fxnxn`
The scattering parameter matrix.
See Also
--------
s
s_power
s_pseudo
s_traveling
References
----------
.. [#] http://en.wikipedia.org/wiki/Scattering_parameters
"""
return s2s(self._s, self.z0, 'pseudo', self.s_def)
@s_pseudo.setter
def s_pseudo(self, s) -> npy.ndarray:
self.s = s2s(s, self.z0, self.s_def, 'pseudo')
@property
def h(self) -> npy.ndarray:
"""
Hybrid parameter matrix.
The h-matrix [#]_ is a 3-dimensional :class:`numpy.ndarray` which has shape
`fxnxn`, where `f` is frequency axis and `n` is number of ports.
Note that indexing starts at 0, so h11 can be accessed by
taking the slice `h[:,0,0]`.
Returns
-------
h : complex :class:`numpy.ndarray` of shape `fxnxn`
the hybrid parameter matrix.
See Also
--------
s
y
z
t
a
h
References
----------
.. [#] http://en.wikipedia.org/wiki/Two-port_network#Hybrid_parameters_(h-parameters)
"""
return s2h(self.s, self.z0)
@h.setter
def h(self, value: npy.ndarray) -> None:
self._s = h2s(fix_param_shape(value), self.z0)
@property
def y(self) -> npy.ndarray:
"""
Admittance parameter matrix.
The y-matrix [#]_ is a 3-dimensional :class:`numpy.ndarray` which has shape
`fxnxn`, where `f` is frequency axis and `n` is number of ports.
Note that indexing starts at 0, so y11 can be accessed by
taking the slice `y[:,0,0]`.
Returns
-------
y : complex :class:`numpy.ndarray` of shape `fxnxn`
the admittance parameter matrix.
See Also
--------
s
y
z
t
a
References
----------
.. [#] http://en.wikipedia.org/wiki/Admittance_parameters
"""
return s2y(self._s, self.z0, s_def=self.s_def)
@y.setter
def y(self, value: npy.ndarray) -> None:
self._s = y2s(fix_param_shape(value), self.z0, s_def=self.s_def)
@property
def z(self) -> npy.ndarray:
"""
Impedance parameter matrix.
The z-matrix [#]_ is a 3-dimensional :class:`numpy.ndarray` which has shape
`fxnxn`, where `f` is frequency axis and `n` is number of ports.
Note that indexing starts at 0, so z11 can be accessed by
taking the slice `z[:,0,0]`.
Returns
-------
z : complex :class:`numpy.ndarray` of shape `fxnxn`
the Impedance parameter matrix.
See Also
--------
s
y
z
t
a
References
----------
.. [#] http://en.wikipedia.org/wiki/impedance_parameters
"""
return s2z(self._s, self.z0, s_def=self.s_def)
@z.setter
def z(self, value: npy.ndarray) -> None:
self._s = z2s(fix_param_shape(value), self.z0, s_def=self.s_def)
@property
def t(self) -> npy.ndarray:
"""
Scattering transfer parameter matrix.
The t-matrix [#]_ is a 3-dimensional :class:`numpy.ndarray`
which has shape `fx2x2`, where `f` is frequency axis.
Note that indexing starts at 0, so t11 can be accessed by
taking the slice `t[:,0,0]`.
The t-matrix, also known as the wave cascading matrix, is
only defined for a 2-port Network.
Returns
-------
t : complex npy.ndarray of shape `fx2x2`
t-parameters, aka scattering transfer parameters
See Also
--------
s
y
z
t
a
References
-----------
.. [#] http://en.wikipedia.org/wiki/Scattering_parameters#Scattering_transfer_parameters
"""
return s2t(self.s)
@t.setter
def t(self, value: npy.ndarray) -> None:
self._s = t2s(fix_param_shape(value))
@property
def s_invert(self) -> npy.ndarray:
"""
Inverted scattering parameter matrix.
Inverted scattering parameters are simply inverted s-parameters,
defined as a = 1/s. Useful in analysis of active networks.
The a-matrix is a 3-dimensional :class:`numpy.ndarray` which has shape
`fxnxn`, where `f` is frequency axis and `n` is number of ports.
Note that indexing starts at 0, so a11 can be accessed by
taking the slice a[:,0,0].
Returns
-------
s_inv : complex :class:`numpy.ndarray` of shape `fxnxn`
the inverted scattering parameter matrix.
See Also
--------
s
y
z
t
a
"""
return 1 / self.s
@s_invert.setter
def s_invert(self, value: npy.ndarray) -> NoReturn:
raise NotImplementedError
@property
def a(self) -> npy.ndarray:
"""
abcd parameter matrix. Used to cascade two-ports.
The abcd-matrix [#]_ is a 3-dimensional :class:`numpy.ndarray` which has shape
`fxnxn`, where `f` is frequency axis and `n` is number of ports.
Note that indexing starts at 0, so abcd11 can be accessed by
taking the slice `abcd[:,0,0]`.
Returns
-------
abcd : complex :class:`numpy.ndarray` of shape `fxnxn`
the Impedance parameter matrix.
See Also
--------
s
y
z
t
a
abcd
References
----------
.. [#] http://en.wikipedia.org/wiki/impedance_parameters
"""
return s2a(self.s, self.z0)
@a.setter
def a(self, value: npy.ndarray) -> None:
self._s = a2s(fix_param_shape(value), self.z0)
@property
def z0(self) -> npy.ndarray:
"""
Characteristic impedance[s] of the network ports.
This property stores the characteristic impedance of each port
of the network. Because it is possible that each port has
a different characteristic impedance each varying with
frequency, `z0` is stored internally as a `fxn` array.
However because `z0` is frequently simple (like 50ohm), it can
be set with just number as well.
Returns
-------
z0 : :class:`numpy.ndarray` of shape fxn
characteristic impedance for network
"""
return self._z0
@z0.setter
def z0(self, z0: NumberLike) -> None:
# cast any array like type (tuple, list) to a npy.array
z0 = npy.array(z0, dtype=complex)
# if _z0 is a vector or matrix, we check if _s is already assigned.
# If not, we cannot proof the correct dimensions and silently accept
# any vector or fxn array
if not hasattr(self, '_s'):
self._z0 = z0
return
# if _z0 is a scalar, we broadcast to the correct shape.
#
# if _z0 is a vector, we check if the dimension matches with either
# nports or frequency.npoints. If yes, we accept the value.
# Note that there can be an ambiguity in theory, if nports == npoints
#
# if _z0 is a matrix, we check if the shape matches with _s
# In any other case raise an Exception
self._z0 = npy.empty(self.s.shape[:2], dtype=complex)
if z0.ndim == 0:
self._z0[:] = z0
elif z0.ndim == 1 and z0.shape[0] == self.s.shape[0]:
self._z0[:] = z0[:, None]
elif z0.ndim == 1 and z0.shape[0] == self.s.shape[1]:
self._z0[:] = z0[None, :]
elif z0.shape == self.s.shape[:2]:
self._z0 = z0
else:
raise AttributeError(f'Unable to broadcast z0 shape {z0.shape} to s shape {self.s.shape}.')
@property
def frequency(self) -> Frequency:
"""
Frequency information for the network.
This property is a :class:`~skrf.frequency.Frequency` object.
It holds the frequency vector, as well frequency unit, and
provides other properties related to frequency information, such
as start, stop, etc.
Returns
-------
frequency : :class:`~skrf.frequency.Frequency` object
frequency information for the network.
See Also
--------
f : property holding frequency vector in Hz
change_frequency : updates frequency property, and
interpolates s-parameters if needed
interpolate : interpolate function based on new frequency
info
"""
try:
return self._frequency
except (AttributeError):
self._frequency = Frequency(0, 0, 0, unit='Hz')
return self._frequency
@frequency.setter
def frequency(self, new_frequency: Union[Frequency, int, Sequence[float], npy.ndarray]) -> None:
"""
Take a Frequency object, see frequency.py.
"""
if isinstance(new_frequency, Frequency):
self._frequency = new_frequency.copy()
else:
try:
self._frequency = Frequency.from_f(new_frequency)
except (TypeError):
raise TypeError('Could not convert argument to a frequency vector')
@property
def inv(self) -> 'Network':
"""
A :class:`Network` object with 'inverse' s-parameters.
This is used for de-embedding.
It is defined such that the inverse of the s-matrix cascaded with itself
is a unity scattering transfer parameter (T) matrix.
Returns
-------
inv : a :class:`Network` object
a :class:`Network` object with 'inverse' s-parameters.
See Also
--------
inv : function which implements the inverse s-matrix
"""
if self.number_of_ports < 2:
raise (TypeError('One-Port Networks don\'t have inverses'))
out = self.copy()
out.s = inv(self.s)
out.deembed = True
return out
@property
def f(self) -> npy.ndarray:
"""
The frequency vector for the network, in Hz.
Returns
-------
f : :class:`numpy.ndarray`
frequency vector in Hz
See Also
--------
frequency : frequency property that holds all frequency
information
"""
return self.frequency.f
@f.setter
def f(self, f: Union[NumberLike, Frequency]) -> None:
warnings.warn('frequency.f parameter will be immutable in the next release.',
DeprecationWarning, stacklevel=2)
if isinstance(f, Frequency):
self.frequency = f
else:
tmpUnit = self.frequency.unit
self.frequency = Frequency.from_f(f, unit=tmpUnit)
@property
def noisy(self) -> bool:
"""
Whether this network has noise.
"""
return self.noise is not None and self.noise_freq is not None
@property
def n(self) -> npy.ndarray:
"""
The ABCD form of the noise correlation matrix for the network.
"""
if not self.noisy:
raise ValueError('network does not have noise')
if self.noise_freq.f.size > 1 :
noise_real = interp1d(self.noise_freq.f, self.noise.real, axis=0, kind=Network.noise_interp_kind)
noise_imag = interp1d(self.noise_freq.f, self.noise.imag, axis=0, kind=Network.noise_interp_kind)
return noise_real(self.frequency.f) + 1.0j * noise_imag(self.frequency.f)
else :
noise_real = self.noise.real
noise_imag = self.noise.imag
return noise_real + 1.0j * noise_imag
@property
def f_noise(self) -> Frequency:
"""
The frequency vector for the noise of the network, in Hz.
"""
if not self.noisy:
raise ValueError('network does not have noise')
return self.noise_freq
@property
def y_opt(self) -> npy.ndarray:
"""
The optimum source admittance to minimize noise.
"""
noise = self.n
return (npy.sqrt(noise[:,1,1]/noise[:,0,0] - npy.square(npy.imag(noise[:,0,1]/noise[:,0,0])))
+ 1.j*npy.imag(noise[:,0,1]/noise[:,0,0]))
@property
def z_opt(self) -> npy.ndarray:
"""
The optimum source impedance to minimize noise.
"""
return 1./self.y_opt
@property
def g_opt(self) -> npy.ndarray:
"""
The optimum source reflection coefficient to minimize noise.
"""
return z2s(self.z_opt.reshape((self.f.shape[0], 1, 1)), self.z0[:,0])[:,0,0]
@property
def nfmin(self) -> npy.ndarray:
"""
The minimum noise figure for the network.
"""
noise = self.n
return npy.real(1. + (noise[:,0,1] + noise[:,0,0] * npy.conj(self.y_opt))/(2*K_BOLTZMANN*T0))
@property
def nfmin_db(self) -> npy.ndarray:
"""
The minimum noise figure for the network in dB.
"""
return mf.complex_2_db10(self.nfmin)
[docs] def nf(self, z: NumberLike) -> npy.ndarray:
"""
The noise figure for the network if the source impedance is z.
"""
z0 = self.z0
y_opt = self.y_opt
fmin = self.nfmin
rn = self.rn
ys = 1./z
gs = npy.real(ys)
return fmin + rn/gs * npy.square(npy.absolute(ys - y_opt))
[docs] def nfdb_gs(self, gs: NumberLike) -> npy.ndarray:
"""
Return dB(NF) foreach gamma_source x noise_frequency.
"""
g = self.copy().s11
nfreq = self.noise_freq.npoints
if isinstance(gs, (int, float, complex)) :
g.s[:,0,0] = gs
nfdb = 10.*npy.log10(self.nf( g.z[:,0,0]))
elif isinstance(gs, npy.ndarray) :
npt = gs.shape[0]
z = self.z0[0,0] * (1+gs)/(1-gs)
zf = npy.broadcast_to(z[:,None], tuple((npt, nfreq)))
nfdb = 10.*npy.log10(self.nf( zf))
else :
g.s[:,0,0] = -1
nfdb = 10.*npy.log10(self.nf( g.z[:,0,0]))
return nfdb
@property
def rn(self) -> npy.ndarray:
"""
The equivalent noise resistance for the network.
"""
return npy.real(self.n[:,0,0]/(4.*K_BOLTZMANN*T0))
# SECONDARY PROPERTIES
@property
def number_of_ports(self) -> int:
"""
The number of ports the network has.
Returns
-------
number_of_ports : number
the number of ports the network has.
"""
try:
return self.s.shape[1]
except (AttributeError):
return 0
@property
def nports(self) -> int:
"""
The number of ports the network has.
Returns
-------
number_of_ports : number
the number of ports the network has.
"""
return self.number_of_ports
@property
def port_tuples(self) -> List[Tuple[int, int]]:
"""
Returns a list of tuples, for each port index pair.
A convenience function for the common task for iterating over
all s-parameters index pairs.
This just calls::
[(y,x) for x in range(self.nports) for y in range(self.nports)]
Returns
-------
ports_ind : list of tuples
list of all port index tuples.
Examples
--------
>>> ntwk = skrf.data.ring_slot
>>> for (idx_i, idx_j) in ntwk.port_tuples: print(idx_i, idx_j)
"""
return [(y, x) for x in range(self.nports) for y in range(self.nports)]
@property
def passivity(self) -> ndarray:
r"""
Passivity metric for a multi-port network.
This returns a matrix who's diagonals are equal to the total
power received at all ports, normalized to the power at a single
excitement port.
Mathematically, this is a test for unitary-ness of the
s-parameter matrix [#]_.
For two port this is
.. math::
( |S_{11}|^2 + |S_{21}|^2 \, , \, |S_{22}|^2+|S_{12}|^2)
in general it is
.. math::
S^H \cdot S
where :math:`H` is conjugate transpose of S, and :math:`\cdot`
is dot product.
Returns
-------
passivity : :class:`numpy.ndarray` of shape fxnxn
References
----------
.. [#] http://en.wikipedia.org/wiki/Scattering_parameters#Lossless_networks
"""
return passivity(self.s)
@property
def reciprocity(self) -> npy.ndarray:
"""
Reciprocity metric for a multi-port network.
This returns the difference between the s-parameter matrix
and its transpose.
For two port this is
.. math::
S - S^T
where :math:`T` is transpose of S
Returns
-------
reciprocity : :class:`numpy.ndarray` of shape `fxnxn`
"""
return reciprocity(self.s)
@property
def reciprocity2(self) -> npy.ndarray:
"""
Reciprocity metric #2
.. math::
abs(1 - S/S^T )
for the two port case, this evaluates to the distance of the
determinant of the wave-cascading matrix from unity.
Returns
-------
reciprocity : :class:`numpy.ndarray` of shape `fxnxn`
"""
return abs(1 - self.s / self.s.swapaxes(1, 2))
@property
def stability(self) -> npy.ndarray:
"""
Stability factor.
.. math::
K = ( 1 - |S_{11}|^2 - |S_{22}|^2 + |D|^2 ) / (2 * |S_{12}| * |S_{21}|)
with
D = S_{11} S_{22} - S_{12} S_{21}
Returns
-------
K : :class:`numpy.ndarray` of shape `f`
"""
if self.nports != 2:
raise ValueError("Stability factor K is only defined for two ports")
D = self.s[:, 0, 0] * self.s[:, 1, 1] - self.s[:, 0, 1] * self.s[:, 1, 0]
denom = 2 * npy.abs(self.s[:, 0, 1]) * npy.abs(self.s[:, 1, 0])
num = (1 - npy.abs(self.s[:, 0, 0]) ** 2 - npy.abs(self.s[:, 1, 1]) ** 2 + npy.abs(D) ** 2)
infs = npy.full(num.shape, npy.inf)
# Handle divide by zero
K = npy.divide(num, denom, out=infs, where=denom!=0)
return K
@property
def max_stable_gain(self) -> npy.ndarray:
r"""
Maximum stable power gain (in linear).
.. math::
G_{ms} = |S_{21}| / |S_{12}|
Returns
-------
gms : :class:`numpy.ndarray` of shape `f`
References
----------
.. [1] M. S. Gupta, "Power gain in feedback amplifiers, a classic revisited,"
in IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 5, pp. 864-879, May 1992, doi: 10.1109/22.137392.
See Also
--------
max_gain : Maximum available and stable power gain
unilateral_gain : Mason's unilateral power gain
stability : Stability factor
"""
if self.nports != 2:
raise ValueError("Maximum stable gain is only defined for two ports")
gms = npy.abs(self.s[:, 1, 0]) / npy.abs(self.s[:, 0, 1])
return gms
@property
def max_gain(self) -> npy.ndarray:
r"""
Maximum available power gain for K > 1 and maximum stable power gain for K <= 1 (in linear).
.. math::
G_{max}|_{K>1} = \frac{|S_{21}|}{|S_{12}|} \times \frac{1}{K + \sqrt{K^2 - 1}}
G_{max}|_{K<=1} = \frac{|S_{21}|}{|S_{12}|}
Returns
-------
gmax : :class:`numpy.ndarray` of shape `f`
Note
----
The maximum available power gain is defined for a unconditionally stable network (K > 1).
For K <= 1, this property returns the maximum stable gain instead.
This behavior is similar to the max_gain() function in Keysight's Advanced Design System (but differs in decibel or linear) [3]_.
References
----------
.. [1] M. S. Gupta, "Power gain in feedback amplifiers, a classic revisited,"
in IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 5, pp. 864-879, May 1992, doi: 10.1109/22.137392.
.. [2] https://www.microwaves101.com/encyclopedias/stability-factor
.. [3] https://edadocs.software.keysight.com/pages/viewpage.action?pageId=5920581
See Also
--------
max_stable_gain : Maximum stable power gain
unilateral_gain : Mason's unilateral power gain
stability : Stability factor
"""
if self.nports != 2:
raise ValueError("Max gain is only defined for two ports")
K = self.stability
K_clipped = npy.clip(K, 1, None)
gmax = self.max_stable_gain / (K_clipped + npy.sqrt(npy.square(K_clipped) - 1))
return gmax
@property
def unilateral_gain(self) -> npy.ndarray:
r"""
Mason's unilateral power gain (in linear).
.. math::
U = \frac{| \frac{S_{21}}{S_{12}} - 1| ^ 2}{2K \frac{|S_{21}|}{|S_{12}|} - 2Re(\frac{S_{21}}{S_{12}})}
Returns
-------
U : :class:`numpy.ndarray` of shape `f`
References
----------
.. [1] M. S. Gupta, "Power gain in feedback amplifiers, a classic revisited,"
in IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 5, pp. 864-879, May 1992, doi: 10.1109/22.137392.
See Also
--------
max_stable_gain : Maximum stable power gain
max_gain : Maximum available and stable power gain
stability : Stability factor
"""
if self.nports != 2:
raise ValueError("Unilateral gain is only defined for two ports")
K = self.stability
gms = self.max_stable_gain
U = npy.abs((self.s[:, 1, 0] / self.s[:, 0, 1]) - 1) ** 2 / (2 * K * gms - 2 * npy.real(self.s[:, 1, 0] / self.s[:, 0, 1]))
return U
@property
def group_delay(self) -> npy.ndarray:
"""
Group delay.
Usually used as a measure of dispersion (or distortion).
Defined as the derivative of the unwrapped s-parameter phase
(in rad) with respect to the frequency::
-d(self.s_rad_unwrap)/d(self.frequency.w)
Returns
-------
gd : :class:`numpy.ndarray` of shape `xnxn`
References
----------
https://en.wikipedia.org/wiki/Group_delay_and_phase_delay
"""
gd = self.s * 0 # quick way to make a new array of correct shape
phi = self.s_rad_unwrap
dw = self.frequency.dw
for m, n in self.port_tuples:
dphi = gradient(phi[:, m, n])
gd[:, m, n] = -dphi / dw
return gd
## NETWORK CLASSIFIERs
[docs] def is_reciprocal(self, tol: float = mf.ALMOST_ZERO) -> bool:
"""
Test for reciprocity.
Parameters
----------
tol : float, optional
Numerical tolerance. The default is :data:`skrf.mathFunctions.ALMOST_ZERO`.
Returns
-------
bool : boolean
See Also
--------
reciprocity
"""
return npy.allclose(reciprocity(self.s), npy.zeros_like(self.s), atol=tol)
[docs] def is_symmetric(self, n: int = 1, port_order: Dict[int, int] = {}, tol: float = mf.ALMOST_ZERO) -> bool:
"""
Return whether the 2N-port network has n-th order reflection symmetry by checking.
:math:`S_{i,i} == S_{j,j}` for appropriate pair(s) of :math:`i` and :math:`j`.
Parameters
----------
n : int
Order of line symmetry to test for
port_order : dict[int, int]
Renumbering of zero-indexed ports before testing
tol : float
Tolerance in numeric comparisons. Default is :data:`skrf.mathFunctions.ALMOST_ZERO`.
Returns
-------
bool : boolean
Raises
------
ValueError
(1) If the network has an odd number of ports
(2) If n is not in the range 1 to N
(3) If n does not evenly divide 2N
(4) If port_order is not a valid reindexing of ports
e.g. specifying x->y but not y->z, specifying x->y twice,
or using an index outside the range 0 to 2N-1
References
----------
https://en.wikipedia.org/wiki/Two-port_network#Scattering_parameters_(S-parameters)
"""
nfreqs, ny, nx = self.s.shape # nfreqs is number of frequencies, and nx, ny both are number of ports (2N)
if nx % 2 != 0 or nx != ny:
raise ValueError('Using is_symmetric() is only valid for a 2N-port network (N=2,4,6,8,...)')
n_ports = nx // 2
if n <= 0 or n > n_ports:
raise ValueError('specified order n = ' + str(n) + ' must be ' +
'between 1 and N = ' + str(n_ports) + ', inclusive')
if nx % n != 0:
raise ValueError('specified order n = ' + str(n) + ' must evenly divide ' +
'N = ' + str(n_ports))
from_ports = list(map(lambda key: int(key), port_order.keys()))
to_ports = list(map(lambda val: int(val), port_order.values()))
test_network = self.copy() # TODO: consider defining renumbered()
if len(from_ports) > 0 and len(to_ports) > 0:
test_network.renumber(from_ports, to_ports)
offs = npy.array(range(0, n_ports)) # port index offsets from each mirror line
for k in range(0, n_ports, n_ports // n): # iterate through n mirror lines
mirror = k * npy.ones_like(offs)
i = mirror - 1 - offs
j = mirror + offs
if not npy.allclose(test_network.s[:, i, i], test_network.s[:, j, j], atol=tol):
return False
return True
[docs] def is_passive(self, tol: float = mf.ALMOST_ZERO) -> bool:
"""
Test for passivity.
Parameters
----------
tol : float, optional
Numerical tolerance. The default is :data:`skrf.mathFunctions.ALMOST_ZERO`
Returns
-------
bool : boolean
"""
try:
M = npy.square(self.passivity)
except ValueError:
return False
I = npy.identity(M.shape[-1])
for f_idx in range(len(M)):
D = I - M[f_idx, :, :] # dissipation matrix
if not mf.is_positive_definite(D) \
and not mf.is_positive_semidefinite(mat=D, tol=tol):
return False
return True
[docs] def is_lossless(self, tol: float = mf.ALMOST_ZERO) -> bool:
"""
Test for losslessness.
[S] is lossless if [S] is unitary, i.e. if :math:`([S][S]^* = [1])`
Parameters
----------
tol : float, optional
Numerical tolerance. The default is :data:`skrf.mathFunctions.ALMOST_ZERO`
Returns
-------
bool : boolean
See Also
--------
is_passive, is_symmetric, is_reciprocal
References
----------
https://en.wikipedia.org/wiki/Unitary_matrix
"""
for f_idx in range(len(self.s)):
mat = self.s[f_idx, :, :]
if not mf.is_unitary(mat, tol=tol):
return False
return True
## CLASS METHODS
[docs] def copy(self) -> 'Network':
"""
Return a copy of this Network.
Needed to allow pass-by-value for a Network instead of
pass-by-reference
Returns
-------
ntwk : :class:`Network`
Copy of the Network
"""
ntwk = Network(s=self.s,
frequency=self.frequency,
z0=self.z0, s_def=self.s_def,
comments=self.comments
)
if self.params is not None:
ntwk.params = self.params.copy()
ntwk.name = self.name
if self.noise is not None and self.noise_freq is not None:
ntwk.noise = self.noise.copy()
ntwk.noise_freq = self.noise_freq.copy()
try:
ntwk.port_names = copy(self.port_names)
except(AttributeError):
ntwk.port_names = None
return ntwk
[docs] def copy_from(self, other: 'Network') -> None:
"""
Copy the contents of another Network into self.
Uses copy, so that the data is passed-by-value, not reference
Parameters
----------
other : Network
the network to copy the contents of
Examples
--------
>>> a = rf.N()
>>> b = rf.N('my_file.s2p')
>>> a.copy_from (b)
"""
for attr in ['_s', 'frequency', '_z0', 'name']:
setattr(self, attr, copy(getattr(other, attr)))
[docs] def copy_subset(self, key: npy.ndarray) -> 'Network':
"""
Return a copy of a frequency subset of this Network.
Needed to allow pass-by-value for a subset Network instead of
pass-by-reference
Parameters
-----------
key : numpy array
the array indices of the frequencies to take
Returns
-------
ntwk : :class:`Network`
Copy of the frequency subset of the Network
"""
ntwk = Network(s=self.s[key,:],
frequency=self.frequency[key].copy(),
z0=self.z0[key,:],
)
if isinstance(self.name, str):
ntwk.name = self.name + '_subset'
else:
ntwk.name = self.name
if self.noise is not None and self.noise_freq is not None:
ntwk.noise = npy.copy(self.noise[key,:])
ntwk.noise_freq = copy(self.noise_freq[key])
try:
ntwk.port_names = copy(self.port_names)
except(AttributeError):
ntwk.port_names = None
return ntwk
[docs] def drop_non_monotonic_increasing(self) -> None:
"""
Drop invalid values based on duplicate and non increasing frequency values.
Example
-------
The following example shows how to use the :func:`drop_non_monotonic_increasing`
automatically, if invalid frequency data is detected and an
:class:`~skrf.frequency.InvalidFrequencyWarning` is thrown.
>>> import warnings
>>> import skrf as rf
>>> from skrf.frequency import InvalidFrequencyWarning
>>> with warnings.catch_warnings(record=True) as warns:
>>> net = rf.Network('corrupted_network.s2p')
>>> w = [w for w in warns if issubclass(w.category, InvalidFrequencyWarning)]
>>> if w:
>>> net.drop_non_monotonic_increasing()
"""
idx = self.frequency.drop_non_monotonic_increasing()
# z0 getter and setter depend on s.shape matching z0.shape.
# Call z0 getter and setter only when s and z0 shapes match.
z0_new = npy.delete(self.z0, idx, axis=0)
self.s = npy.delete(self.s, idx, axis=0)
self.z0 = z0_new
if self.noisy:
idx = self.noise_freq.drop_non_monotonic_increasing()
self.noise = npy.delete(self.noise, idx, axis=0)
[docs] def set_noise_a(self, noise_freq: Frequency = None, nfmin_db: float = 0,
gamma_opt: float = 0, rn: NumberLike = 1 ) -> None:
"""
Set the "A" (ie cascade) representation of the correlation matrix, based on the
noise frequency and input parameters.
"""
sh_fr = noise_freq.f.shape
nfmin_db = npy.broadcast_to(npy.atleast_1d(nfmin_db), sh_fr)
gamma_opt = npy.broadcast_to(npy.atleast_1d(gamma_opt), sh_fr)
rn = npy.broadcast_to(npy.atleast_1d(rn), sh_fr)
nf_min = npy.power(10., nfmin_db/10.)
# TODO maybe interpolate z0 as above
y_opt = 1./(self.z0[0, 0] * (1. + gamma_opt)/(1. - gamma_opt))
noise = 4.*K_BOLTZMANN*T0*npy.array(
[[rn, (nf_min-1.)/2. - rn*npy.conj(y_opt)],
[(nf_min-1.)/2. - rn*y_opt, npy.square(npy.absolute(y_opt)) * rn]]
)
self.noise = noise.swapaxes(0, 2).swapaxes(1, 2)
self.noise_freq = noise_freq
# touchstone file IO
[docs] def read_touchstone(self, filename: Union[str, TextIO],
encoding: Union[str, None] = None) -> None:
"""
Load values from a touchstone file.
The work of this function is done through the
:class:`~skrf.io.touchstone` class.
Parameters
----------
filename : str or file-object
touchstone file name.
encoding : str, optional
define the file encoding to use. Default value is None,
meaning the encoding is guessed.
Note
----
Only the scattering parameters format is supported at the moment.
"""
from .io import touchstone
touchstoneFile = touchstone.Touchstone(filename, encoding=encoding)
if touchstoneFile.get_format().split()[1] != 's':
raise NotImplementedError('only s-parameters supported for now.')
self.comments = touchstoneFile.get_comments()
self.variables = touchstoneFile.get_comment_variables()
self.port_names = touchstoneFile.port_names
f, self.s = touchstoneFile.get_sparameter_arrays() # note: freq in Hz
self.frequency = Frequency.from_f(f, unit='hz')
self.frequency.unit = touchstoneFile.frequency_unit
if touchstoneFile.has_hfss_port_impedances:
self.gamma, self.z0 = touchstoneFile.get_gamma_z0()
# if s_def not explicitely passed before, uses default HFSS setting
if self.s_def is None:
self.s_def = S_DEF_HFSS_DEFAULT
else:
self.z0 = touchstoneFile.resistance
if touchstoneFile.noise is not None:
noise_freq = touchstoneFile.noise[:, 0] * touchstoneFile.frequency_mult
nfmin_db = touchstoneFile.noise[:, 1]
gamma_opt_mag = touchstoneFile.noise[:, 2]
gamma_opt_angle = npy.deg2rad(touchstoneFile.noise[:, 3])
# TODO maybe properly interpolate z0?
# it probably never actually changes
if touchstoneFile.version == '1.0':
rn = touchstoneFile.noise[:, 4] * self.z0[0, 0]
else:
rn = touchstoneFile.noise[:, 4]
gamma_opt = gamma_opt_mag * npy.exp(1j * gamma_opt_angle)
nf_min = npy.power(10., nfmin_db/10.)
# TODO maybe interpolate z0 as above
y_opt = 1./(self.z0[0, 0] * (1. + gamma_opt)/(1. - gamma_opt))
# use the voltage/current correlation matrix; this works nicely with
# cascading networks
self.noise_freq = Frequency.from_f(noise_freq, unit='hz')
self.noise_freq.unit = touchstoneFile.frequency_unit
self.set_noise_a(self.noise_freq, nfmin_db, gamma_opt, rn)
if self.name is None:
try:
self.name = os.path.basename(os.path.splitext(filename)[0])
# this may not work if filename is a file object
except(AttributeError, TypeError):
# in case they pass a file-object instead of file name,
# get the name from the touchstone file
try:
self.name = os.path.basename(os.path.splitext(touchstoneFile.filename)[0])
except():
print('warning: couldn\'t inspect network name')
self.name = ''
pass
[docs] @classmethod
def zipped_touchstone(cls, filename: str, archive: zipfile.ZipFile) -> 'Network':
"""
Read a Network from a Touchstone file in a ziparchive.
Parameters
----------
filename : str
the full path filename of the touchstone file
archive : zipfile.ZipFile
the opened zip archive
Returns
-------
ntwk : :class:`Network`
Network from the Touchstone file
"""
# Touchstone requires file objects to be seekable (for get_gamma_z0_from_fid)
# A ZipExtFile object is not seekable prior to Python 3.7, so use StringIO
# and manually add a name attribute
fileobj = io.StringIO(archive.open(filename).read().decode('UTF-8'))
fileobj.name = filename
ntwk = Network(fileobj)
return ntwk
[docs] def write_touchstone(self, filename: str = None, dir: str = None,
write_z0: bool = False, skrf_comment: bool = True,
return_string: bool = False, to_archive: bool = None,
form: str = 'ri', format_spec_A: str = '{}', format_spec_B: str = '{}',
format_spec_freq : str = '{}', r_ref : float = None) -> Optional[str]:
"""
Write a contents of the :class:`Network` to a touchstone file.
Parameters
----------
filename : a string, optional
touchstone filename, without extension. if 'None', then
will use the network's :attr:`name`.
dir : string, optional
the directory to save the file in.
write_z0 : boolean
write impedance information into touchstone as comments,
like Ansoft HFSS does
skrf_comment : bool, optional
write `created by skrf` comment
return_string : bool, optional
return the file_string rather than write to a file
to_archive : zipfile.Zipfile
opened ZipFile object to place touchstone file in
form : string
format to write data:
'db': db, deg. 'ma': mag, deg. 'ri': real, imag.
format_spec_A : string, optional
Any valid format specifying string as given by
https://docs.python.org/3/library/string.html#format-string-syntax
This specifies the formatting in the resulting touchstone file for the A part of the S parameter,
(e.g. the dB magnitude for 'db' format, the linear
magnitude for 'ma' format, or the real part for 'ri' format)
format_spec_B : string, optional
Any valid format specifying string as given by
https://docs.python.org/3/library/string.html#format-string-syntax
This specifies the formatting in the resulting touchstone file for the B part of the S parameter,
(e.g. the angle in degrees for 'db' format,
the angle in degrees for 'ma' format, or the imaginary part for 'ri' format)
format_spec_freq : string, optional
Any valid format specifying string as given by
https://docs.python.org/3/library/string.html#format-string-syntax
This specifies the formatting in the resulting touchstone file for the frequency.
r_ref : float
Reference impedance to renormalize the network.
If None network port impedance is used if possible. If None and
network port impedance is complex and not equal at all ports and
frequency points raises ValueError.
Note
----
Format supported at the moment are [Hz/kHz/MHz/GHz] S [DB/MA/RI]
Frequency unit can be changed by setting Network.frequency.unit property
Note
----
The functionality of this function should take place in the
:class:`~skrf.io.touchstone.Touchstone` class.
"""
# according to Touchstone 2.0 spec
# [no tab, max. 4 coeffs per line, etc.]
have_complex_ports = npy.any(self.z0.imag != 0)
equal_z0 = npy.all(self.z0 == self.z0[0, 0])
ntwk = self.copy()
if r_ref is None and not write_z0:
if not equal_z0:
raise ValueError((
"Network has unequal port impedances but reference impedance for renormalization"
" 'r_ref' is not specified.")
)
if have_complex_ports:
raise ValueError(
("Network port impedances are complex but reference impedance for renormalization"
" 'r_ref' is not specified.")
)
r_ref = ntwk.z0[0, 0]
elif r_ref is not None:
if not npy.isscalar(r_ref):
raise ValueError('r_ref must be scalar')
if r_ref.imag != 0:
raise ValueError('r_ref must be real')
ntwk.renormalize(r_ref)
if filename is None:
if ntwk.name is not None:
filename = ntwk.name
else:
raise ValueError('No filename given. Network must have a name, or you must provide a filename')
if get_extn(filename) is None:
filename = filename + '.s%ip' % ntwk.number_of_ports
if dir is not None:
filename = os.path.join(dir, filename)
# set internal variables according to form
form = form.upper()
if form == "RI":
formatDic = {"labelA": "Re", "labelB": "Im"}
funcA = npy.real
funcB = npy.imag
elif form == "DB":
formatDic = {"labelA": "dB", "labelB": "ang"}
funcA = mf.complex_2_db
funcB = mf.complex_2_degree
elif form == "MA":
formatDic = {"labelA": "mag", "labelB": "ang"}
funcA = mf.complex_2_magnitude
funcB = mf.complex_2_degree
else:
raise ValueError('`form` must be either `db`,`ma`,`ri`')
# add formatting to funcA and funcB so we don't have to write it out many many times.
def c2str_A(c: NumberLike) -> str:
"""Take a complex number for the A part of param and return an appropriately formatted string."""
return format_spec_A.format(funcA(c))
def c2str_B(c: NumberLike) -> str:
"""Take a complex number for B part of param and return an appropriately formatted string."""
return format_spec_B.format(funcB(c))
def get_buffer() -> io.StringIO:
if return_string is True or type(to_archive) is zipfile.ZipFile:
from .io.general import StringBuffer # avoid circular import
buf = StringBuffer()
else:
buf = open(filename, "w")
return buf
with get_buffer() as output:
# Add '!' Touchstone comment delimiters to the start of every line in ntwk.comments
commented_header = ''
try:
if ntwk.comments:
for comment_line in ntwk.comments.split('\n'):
commented_header += f'!{comment_line}\n'
except AttributeError:
pass
if skrf_comment:
commented_header += '!Created with skrf (http://scikit-rf.org).\n'
output.write(commented_header)
# write header file.
# the '#' line is NOT a comment it is essential and it must be
# exactly this format, to work
# [HZ/KHZ/MHZ/GHZ] [S/Y/Z/G/H] [MA/DB/RI] [R n]
if write_z0:
output.write('!Data is not renormalized\n')
output.write(f'# {ntwk.frequency.unit} S {form} R\n')
else:
# Write "r_ref.real" instead of "r_ref", so we get a real number "a" instead
# of a complex number "(a+0j)", which is unsupported by the standard Touchstone
# format (non-HFSS). We already checked in the beginning that "r_ref" must be
# real in this case (write_z0 == False).
assert r_ref.imag == 0, "Complex reference impedance is encountered when " \
"generating a standard Touchstone (non-HFSS), this " \
"should never happen in scikit-rf."
output.write(f'# {ntwk.frequency.unit} S {form} R {r_ref.real} \n')
# write ports
try:
if ntwk.port_names and len(ntwk.port_names) == ntwk.number_of_ports:
ports = ''
for port_idx, port_name in enumerate(ntwk.port_names):
ports += f'! Port[{port_idx+1}] = {port_name}\n'
output.write(ports)
except AttributeError:
pass
scaled_freq = ntwk.frequency.f_scaled
if ntwk.number_of_ports == 1:
# write comment line for users (optional)
output.write('!freq {labelA}S11 {labelB}S11\n'.format(**formatDic))
# write out data
for f in range(len(ntwk.f)):
output.write(format_spec_freq.format(scaled_freq[f]) + ' ' \
+ c2str_A(ntwk.s[f, 0, 0]) + ' ' \
+ c2str_B(ntwk.s[f, 0, 0]) + '\n')
# write out the z0 following hfss's convention if desired
if write_z0:
output.write('! Port Impedance ')
for n in range(ntwk.number_of_ports):
output.write(f'{ntwk.z0[f, n].real:.14f} {ntwk.z0[f, n].imag:.14f} ')
output.write('\n')
elif ntwk.number_of_ports == 2:
# 2-port is a special case with
# - single line, and
# - S21,S12 in reverse order: legacy ?
# write comment line for users (optional)
output.write(
'!freq {labelA}S11 {labelB}S11 {labelA}S21 {labelB}S21 {labelA}S12 {labelB}S12 {labelA}S22 {labelB}S22\n'.format(
**formatDic))
# write out data
for f in range(len(ntwk.f)):
output.write(format_spec_freq.format(scaled_freq[f]) + ' ' \
+ c2str_A(ntwk.s[f, 0, 0]) + ' ' \
+ c2str_B(ntwk.s[f, 0, 0]) + ' ' \
+ c2str_A(ntwk.s[f, 1, 0]) + ' ' \
+ c2str_B(ntwk.s[f, 1, 0]) + ' ' \
+ c2str_A(ntwk.s[f, 0, 1]) + ' ' \
+ c2str_B(ntwk.s[f, 0, 1]) + ' ' \
+ c2str_A(ntwk.s[f, 1, 1]) + ' ' \
+ c2str_B(ntwk.s[f, 1, 1]) + '\n')
# write out the z0 following hfss's convention if desired
if write_z0:
output.write('! Port Impedance')
for n in range(2):
output.write(f' {ntwk.z0[f, n].real:.14f} {ntwk.z0[f, n].imag:.14f}')
output.write('\n')
# write noise data if it exists
if ntwk.noisy:
new = ntwk.copy()
new.resample(ntwk.f_noise) # only write data from original noise freqs
for f, nf, g_opt, rn, z0 in zip(new.f_noise.f_scaled, new.nfmin_db, new.g_opt, new.rn, new.z0):
output.write(f"{f} {nf} {mf.complex_2_magnitude(g_opt)} {mf.complex_2_degree(g_opt)} {rn/z0[0].real}\n")
elif ntwk.number_of_ports == 3:
# 3-port is written over 3 lines / matrix order
# write comment line for users (optional)
output.write('!freq')
for m in range(1, 4):
for n in range(1, 4):
output.write(" {labelA}S{m}{n} {labelB}S{m}{n}".format(m=m, n=n, **formatDic))
output.write('\n!')
output.write('\n')
# write out data
for f in range(len(ntwk.f)):
output.write(format_spec_freq.format(scaled_freq[f]))
for m in range(3):
for n in range(3):
output.write(' ' + c2str_A(ntwk.s[f, m, n]) + ' ' \
+ c2str_B(ntwk.s[f, m, n]))
output.write('\n')
# write out the z0 following hfss's convention if desired
if write_z0:
output.write('! Port Impedance')
for n in range(3):
output.write(f' {ntwk.z0[f, n].real:.14f} {ntwk.z0[f, n].imag:.14f}')
output.write('\n')
elif ntwk.number_of_ports >= 4:
# general n-port
# - matrix is written line by line
# - 4 complex numbers / 8 real numbers max. for a single line
# - continuation lines (anything except first) go with indent
# this is not part of the spec, but many tools handle it this way
# -> allows to parse without knowledge of number of ports
# write comment line for users (optional)
output.write('!freq')
for m in range(1, 1 + ntwk.number_of_ports):
for n in range(1, 1 + ntwk.number_of_ports):
if (n > 0 and (n % 4) == 0):
output.write('\n!')
output.write(" {labelA}S{m}{n} {labelB}S{m}{n}".format(m=m, n=n, **formatDic))
output.write('\n!')
output.write('\n')
# write out data
for f in range(len(ntwk.f)):
output.write(format_spec_freq.format(scaled_freq[f]))
for m in range(ntwk.number_of_ports):
for n in range(ntwk.number_of_ports):
if (n > 0 and (n % 4) == 0):
output.write('\n')
output.write(' ' + c2str_A(ntwk.s[f, m, n]) + ' ' \
+ c2str_B(ntwk.s[f, m, n]))
output.write('\n')
# write out the z0 following hfss's convention if desired
if write_z0:
output.write('! Port Impedance')
for n in range(ntwk.number_of_ports):
output.write(f' {ntwk.z0[f, n].real:.14f} {ntwk.z0[f, n].imag:.14f}')
output.write('\n')
if type(to_archive) is zipfile.ZipFile:
to_archive.writestr(filename, output.getvalue())
elif return_string is True:
return output.getvalue()
[docs] def write(self, file: str = None, *args, **kwargs) -> None:
r"""
Write the Network to disk using the :mod:`pickle` module.
The resultant file can be read either by using the Networks
constructor, :func:`__init__` , the read method :func:`read`, or
the general read function :func:`skrf.io.general.read`
Parameters
----------
file : str or file-object
filename or a file-object. If left as None then the
filename will be set to Network.name, if its not None.
If both are None, ValueError is raised.
\*args, \*\*kwargs :
passed through to :func:`~skrf.io.general.write`
Note
----
If the self.name is not None and file is can left as None
and the resultant file will have the `.ntwk` extension appended
to the filename.
Examples
--------
>>> n = rf.N(f=[1,2,3],s=[1,1,1],z0=50, name = 'open')
>>> n.write()
>>> n2 = rf.read('open.ntwk')
See Also
--------
skrf.io.general.write : write any skrf object
skrf.io.general.read : read any skrf object
"""
# this import is delayed until here because of a circular dependency
from .io.general import write
if file is None:
if self.name is None:
raise (ValueError('No filename given. You must provide a filename, or set the name attribute'))
file = self.name
write(file, self, *args, **kwargs)
[docs] def read(self, *args, **kwargs) -> None:
r"""
Read a Network from a 'ntwk' file.
A ntwk file is written with :func:`write`. It is just a pickled
file.
Parameters
----------
\*args, \*\*kwargs : args and kwargs
passed to :func:`skrf.io.general.read`
Note
----
This function calls :func:`skrf.io.general.read`.
Examples
--------
>>> rf.read('myfile.ntwk')
>>> rf.read('myfile.p')
See Also
--------
skrf.io.general.read
write
skrf.io.general.write
"""
from .io.general import read
self.copy_from(read(*args, **kwargs))
[docs] def write_spreadsheet(self, *args, **kwargs) -> None:
"""
Write contents of network to a spreadsheet, for your boss to use.
See Also
--------
skrf.io.general.network_2_spreadsheet
"""
from .io.general import network_2_spreadsheet
network_2_spreadsheet(self, *args, **kwargs)
[docs] def to_dataframe(self, *args, **kwargs) -> 'pd.DataFrame':
"""
Convert attributes of a Network to a pandas DataFrame.
Use the same parameters than :func:`skrf.io.general.network_2_dataframe`
Parameters
----------
attrs : list of string
Network attributes to convert, like ['s_db','s_deg']
ports : list of tuples
list of port pairs to write. defaults to ntwk.port_tuples
(like [[0,0]])
Returns
-------
df : `pandas.DataFrame`
See Also
---------
skrf.io.general.network_2_dataframe
"""
from .io.general import network_2_dataframe
return network_2_dataframe(self, *args, **kwargs)
[docs] def write_to_json_string(self) -> str:
"""
Serialize and convert network to a JSON string.
This is ~3x faster than writing to and reading back from touchstone
for a 4port 20,000 point device.
Returns
-------
jsonstr : string
JSON string
See Also
--------
skrf.io.general.to_json_string
"""
from .io.general import to_json_string
return to_json_string(self)
# interpolation
[docs] def interpolate(self, freq_or_n: Union[Frequency, NumberLike], basis: str = 's',
coords: str = 'cart', f_kwargs: dict = {}, return_array: bool = False,
**kwargs) -> Union['Network', npy.ndarray]:
r"""
Interpolate a Network along frequency axis.
The input 'freq_or_n` can be either a new
:class:`~skrf.frequency.Frequency` or an `int`, or a new
frequency vector (in Hz).
This interpolates a given `basis`, ie s, z, y, etc, in the
coordinate system defined by `coord` like polar or cartesian.
Different interpolation types ('linear', 'quadratic') can be used
by passing appropriate `\*\*kwargs`. This function returns an
interpolated Network. Alternatively :func:`~Network.interpolate_self`
will interpolate self.
Parameters
----------
freq_or_n : :class:`~skrf.frequency.Frequency` or int or list-like
The new frequency over which to interpolate. this arg may be
one of the following:
* a new :class:`~skrf.frequency.Frequency` object
* an int: the current frequency span is resampled linearly.
* a list-like: create a new frequency using :meth:`~skrf.frequency.Frequency.from_f`
basis : ['s','z','y','a'], etc
The network parameter to interpolate
coords : string
Coordinate system to use for interpolation: 'cart' or 'polar':
'cart' is cartesian is Re/Im. 'polar' is unwrapped phase/mag
return_array: bool
return the interpolated array instead of re-assigning it to
a given attribute
**kwargs : keyword arguments
passed to :func:`scipy.interpolate.interp1d` initializer.
`kind` controls interpolation type.
`kind` = `rational` uses interpolation by rational polynomials.
`d` kwarg controls the degree of rational polynomials
when `kind`=`rational`. Defaults to 4.
Returns
-------
result : :class:`Network`
an interpolated Network, or array
Note
----
The interpolation coordinate system (`coords`) makes a big
difference for large amounts of interpolation. polar works well
for duts with slowly changing magnitude. try them all.
See :func:`scipy.interpolate.interpolate.interp1d` for useful
kwargs. For example:
kind : string or int
Specifies the kind of interpolation as a string ('linear',
'nearest', 'zero', 'slinear', 'quadratic, 'cubic') or
as an integer specifying the order of the spline
interpolator to use.
See Also
--------
resample
interpolate_self
interpolate_from_f
Examples
--------
.. ipython::
@suppress
In [21]: import skrf as rf
In [21]: n = rf.data.ring_slot
In [21]: n
In [21]: new_freq = rf.Frequency(75,110,501,'ghz')
In [21]: n.interpolate(new_freq, kind = 'cubic')
"""
# make new network and fill with interpolated values
result = self.copy()
if kwargs.get('kind', None) == 'rational':
f_interp = mf.rational_interp
#Not supported by rational_interp
del kwargs['kind']
else:
f_interp = interp1d
# interpret input
if isinstance(freq_or_n, Frequency):
# input is a frequency object
new_frequency = freq_or_n
else:
dim = len(shape(freq_or_n))
if dim == 0:
# input is a number
new_frequency = Frequency(start=self.frequency.start_scaled,
stop=self.frequency.stop_scaled,
unit=self.frequency.unit,
npoints=freq_or_n)
elif dim == 1:
# input is a array, or list
new_frequency = Frequency.from_f(freq_or_n, **f_kwargs)
# set new frequency and pull some variables
result.frequency = new_frequency
f = self.frequency.f
f_new = new_frequency.f
# interpolate z0 ( this must happen first, because its needed
# to compute the basis transform below (like y2s), if basis!='s')
if npy.all(self.z0 == self.z0[0]):
# If z0 is constant we don't need to interpolate it
z0_shape = list(self.z0.shape)
z0_shape[0] = len(f_new)
result._z0 = npy.ones(z0_shape) * self.z0[0]
else:
result._z0 = f_interp(f, self.z0, axis=0, **kwargs)(f_new)
# interpolate parameter for a given basis
x = getattr(self, basis)
if coords == 'cart':
x_new = f_interp(f, x, axis=0, **kwargs)(f_new)
elif coords == 'polar':
rad = npy.unwrap(npy.angle(x), axis=0)
mag = npy.abs(x)
interp_rad = f_interp(f, rad, axis=0, **kwargs)
interp_mag = f_interp(f, mag, axis=0, **kwargs)
x_new = interp_mag(f_new) * npy.exp(1j * interp_rad(f_new))
else:
raise ValueError(f'Unknown coords {coords}')
# interpolate noise data too
if self.noisy:
f_noise = self.noise_freq.f
f_noise_new = new_frequency.f
noise_new = f_interp(f_noise, self.noise, axis=0, **kwargs)(f_noise_new)
if return_array:
return x_new
else:
result.__setattr__(basis, x_new)
if self.noisy:
result.noise = noise_new
result.noise_freq = new_frequency
return result
[docs] def interpolate_self(self, freq_or_n: Union[Frequency, NumberLike], **kwargs) -> None:
"""
Interpolate the current Network along frequency axis (inplace).
The input 'freq_or_n` can be either a new
:class:`~skrf.frequency.Frequency` or an `int`, or a new
frequency vector (in Hz).
See :func:`~Network.interpolate` for more information.
Parameters
----------
freq_or_n : :class:`~skrf.frequency.Frequency` or int or list-like
The new frequency over which to interpolate. this arg may be
one of the following:
* a new :class:`~skrf.frequency.Frequency` object
* an int: the current frequency span is resampled linearly.
* a list-like: create a new frequency using :meth:`~skrf.frequency.Frequency.from_f`
**kwargs : keyword arguments
passed to :func:`scipy.interpolate.interp1d` initializer.
Returns
-------
None
The interpolation is performed inplace.
See Also
--------
resample
interpolate
interpolate_from_f
"""
ntwk = self.interpolate(freq_or_n, **kwargs)
self.frequency, self.s, self.z0 = ntwk.frequency, ntwk.s, ntwk.z0
if self.noisy:
self.noise, self.noise_freq = ntwk.noise, ntwk.noise_freq
##convenience
resample = interpolate_self
[docs] def subnetwork(self, ports: Sequence[int], offby: int = 1) -> 'Network':
"""
Return a subnetwork of a the Network from a list of port numbers.
A subnetwork is Network which S-parameters corresponds to selected ports,
with all non-selected ports considered matched.
The resulting subNetwork is given a new Network.name property
from the initial name and adding the kept ports indices
(ex: 'device' -> 'device13'). Such name should make easier the use
of functions such as n_twoports_2_nport.
Parameters
----------
ports : list of int
List of ports to keep in the resultant Network.
Indices are the Python indices (starts at 0)
offby : int
starting value for s-parameters indexes in the sub-Network name parameter.
A value of `1`, assumes that a s21 = ntwk.s[:,1,0]. Default is 1.
Returns
-------
subntw : :class:`Network` object
Resulting subnetwork of the Network from the given ports
See also
--------
subnetwork, n_twoports_2_nport
"""
return subnetwork(self, ports, offby)
[docs] def crop(self, f_start: float, f_stop: float, unit: str = None) -> None:
"""
Crop Network based on start and stop frequencies.
No interpolation is done.
Parameters
----------
f_start : number
start frequency of crop range, in units of self.frequency.unit.
If `f_start` is lower than the lowest frequency, no change to the network is made by the lower bound.
f_stop : number
stop frequency of crop range, in units of self.frequency.unit
If `f_stop` is higher than the highest frequency, no change to the network is made by the higher bound.
unit : string
Units that `f_start` and `f_stop` are described in. This must be a string recognized by the Frequency
class, e.g. 'Hz','MHz', etc. A value of `None` assumes units are same as `self`
See Also
--------
cropped
"""
if f_start is None:
f_start = -npy.inf
if f_stop is None:
f_stop = npy.inf
if f_stop<f_start:
raise ValueError(f"`f_stop` was {f_stop}, which was smaller than `f_start`, which was {f_start}")
if unit is not None: # if `unit` is specified, we must retranslate the frequency units
scaleFactor = Frequency.multiplier_dict[unit.lower()]/self.frequency.multiplier# make a multiplier to put f_start and f_stop in the right units, e.g. 'GHz' -> 'MHz'
f_start *=scaleFactor
f_stop *=scaleFactor
if f_start > self.frequency.f_scaled.max():
raise ValueError(f"`f_start` was {f_start}, which was larger than the largest frequency in this Network object, which was {self.frequency.f_scaled.max()}")
if f_stop < self.frequency.f_scaled.min():
raise ValueError(f"`f_stop` was {f_stop}, which was smaller than the smallest frequency in this Network object, which was {self.frequency.f_scaled.min()}")
start_idx,stop_idx = 0,self.frequency.npoints-1 # start with entire frequency range selected
if f_start > self.frequency.f_scaled.min():
start_idx = find_nearest_index(self.frequency.f_scaled, f_start)
if f_start > self.frequency.f_scaled[start_idx]: # we do not want the start index to be at a frequency lower than `f_start`
start_idx += 1
if f_stop < self.frequency.f_scaled.max():
stop_idx = find_nearest_index(self.frequency.f_scaled, f_stop)
if f_stop < self.frequency.f_scaled[stop_idx]: # we don't want the stop index to be at a frequency higher than `f_stop`
stop_idx -=1
if stop_idx < start_idx :
raise ValueError("Stop index/frequency lower than start: stop_idx: {}, start_idx: {}, self.frequency.f[stop_idx]: {}, self.frequency.f[start_idx]: {}"\
.format(stop_idx,start_idx,self.frequency.f[stop_idx],self.frequency.f[start_idx] ))
ntwk = self[start_idx:stop_idx + 1]
self.frequency, self.s, self.z0 = ntwk.frequency, ntwk.s, ntwk.z0
[docs] def cropped(self, f_start: float, f_stop: float, unit: str = None) -> 'Network':
"""
Returns a cropped network, leaves self alone.
Parameters
----------
f_start : number
start frequency of crop range, in units of self.frequency.unit.
If `f_start` is lower than the lowest frequency, no change to the network is made by the lower bound.
f_stop : number
stop frequency of crop range, in units of self.frequency.unit
If `f_stop` is higher than the highest frequency, no change to the network is made by the higher bound.
unit : string
Units that `f_start` and `f_stop` are described in. This must be a string recognized by the Frequency
class, e.g. 'Hz','MHz', etc. A value of `None` assumes units are same as `self`
Returns
-------
ntwk : :class:`Network` object
Resulting cropped network
See Also
--------
crop
"""
out = self.copy()
out.crop(f_start=f_start, f_stop=f_stop,unit=unit)
return out
[docs] def flip(self) -> None:
"""
Swap the ports of a 2n-port Network (inplace).
In case the network is 2n-port and n > 1, 'second' numbering scheme is
assumed to be consistent with the ** cascade operator::
+--------+ +--------+
0-|0 n|-n 0-|n 0|-n
1-|1 n+1|-n+1 flip 1-|n+1 1|-n+1
... ... => ... ...
n-1-|n-1 2n-1|-2n-1 n-1-|2n-1 n-1|-2n-1
+--------+ +--------+
See Also
--------
flipped
renumber
renumbered
"""
if self.number_of_ports % 2 == 0:
n = int(self.number_of_ports / 2)
old = list(range(0, 2*n))
new = list(range(n, 2*n)) + list(range(0, n))
self.renumber(old, new)
else:
raise ValueError('you can only flip two-port Networks')
[docs] def flipped(self) -> 'Network':
"""
Returns a flipped network, leaves self alone.
Returns
-------
ntwk : :class:`Network` object
Resulting flipped Network
See Also
--------
flip
renumber
renumbered
"""
out = self.copy()
out.flip()
return out
[docs] def renormalize(self, z_new: NumberLike, s_def: str = None) -> None:
"""
Renormalize s-parameter matrix given a new port impedances.
Parameters
----------
z_new : complex array of shape FxN, F, N or a scalar
new port impedances
s_def : str -> s_def : can be: None, 'power', 'pseudo' or 'traveling'
None to use the definition set in the network `s_def` attribute.
Scattering parameter definition : 'power' for power-waves definition,
'pseudo' for pseudo-waves definition.
'traveling' corresponds to the initial implementation.
Default is 'power'.
NB: results are the same for real-valued characteristic impedances.
See Also
--------
renormalize_s
fix_z0_shape
"""
# cast any array like type (tuple, list) to a npy.array
z_new = npy.array(z_new, dtype=complex)
# make sure the z_new shape can be compared with self.z0
z_new = fix_z0_shape(z_new, self.frequency.npoints, self.nports)
if s_def is None:
s_def = self.s_def
# Try to avoid renormalization if possible since it goes through
# Z-parameters which can cause numerical inaccuracies.
# We need to renormalize if z_new is different from z0
# or s_def is different and there is at least one complex port.
need_to_renorm = False
if npy.any(self.z0 != z_new):
need_to_renorm = True
if s_def != self.s_def and (self.z0.imag != 0).any():
need_to_renorm = True
if need_to_renorm:
# We can use s2s if z0 is the same. This is numerically much more
# accurate.
if (self.z0 == z_new).all():
self.s = s2s(self.s, self.z0, s_def, self.s_def)
else:
self.s = renormalize_s(self.s, self.z0, z_new, s_def, self.s_def)
# Update s_def if it was changed
self.s_def = s_def
self.z0 = z_new
[docs] def renumber(self, from_ports: Sequence[int], to_ports: Sequence[int]) -> None:
"""
Renumber ports of a Network (inplace).
Parameters
----------
from_ports : list-like
List of port indices to change. Size between 1 and N_ports.
to_ports : list-like
List of desired port indices. Size between 1 and N_ports.
NB : from_ports and to_ports must have same size.
Returns
-------
None
The reorganization of the Network's port is performed inplace.
Examples
--------
In the following example, the ports of a 3-ports Network are
reorganized. Dummy reference impedances are set only to follow more
easily the renumbering.
>>> f = rf.Frequency(1, 1, 1)
>>> s = np.ones((1, 3, 3))
>>> z0 = [10, 20, 30]
>>> ntw = rf.Network(frequency=f, s=s, z0=z0) # our OEM Network
In picture, we have::
Order in Original Order
skrf.Network
┌───────────────────┐
│ OEM │
│ │
0 ────────┤ A (10 Ω) │
│ │
│ │
1 ────────┤ B (20 Ω) │
│ │
│ │
2 ────────┤ C (30 Ω) │
│ │
└───────────────────┘
While after renumbering
>>> ntw.renumber([0,1,2], [1, 2, 0])
we now have::
Order in Original Order
skrf.Network
┌───────────────────┐
│ OEM │
│ │
1 ────────┤ A (10 Ω) │
│ │
│ │
2 ────────┤ B (20 Ω) │
│ │
│ │
0 ────────┤ C (30 Ω) │
│ │
└───────────────────┘
**Other examples:**
To flip the ports of a 2-port network 'foo':
>>> foo.renumber( [0,1], [1,0] )
To rotate the ports of a 3-port network 'bar' so that port 0 becomes port 1:
>>> bar.renumber( [0,1,2], [1,2,0] )
To swap the first and last ports of an N-port (N>=2) Network 'duck':
>>> duck.renumber( [0,-1], [-1,0] )
See Also
--------
renumbered
flip
flipped
"""
from_ports = npy.array(from_ports)
to_ports = npy.array(to_ports)
if len(npy.unique(from_ports)) != len(from_ports):
raise ValueError('an index can appear at most once in from_ports or to_ports')
if any(npy.unique(from_ports) != npy.unique(to_ports)):
raise ValueError('from_ports and to_ports must have the same set of indices')
self.s[:, to_ports, :] = self.s[:, from_ports, :] # renumber rows
self.s[:, :, to_ports] = self.s[:, :, from_ports] # renumber columns
self.z0[:, to_ports] = self.z0[:, from_ports]
[docs] def renumbered(self, from_ports: Sequence[int], to_ports: Sequence[int]) -> 'Network':
"""
Return a renumbered Network, leave self alone.
Parameters
----------
from_ports : list-like
List of port indices to change. Size between 1 and N_ports.
to_ports : list-like
List of desired port indices. Size between 1 and N_ports.
NB: from_ports and to_ports must have same size.
Returns
-------
ntwk : :class:`Network` object
Resulting renumbered Network
See Also
--------
renumber
flip
flipped
"""
out = self.copy()
out.renumber(from_ports, to_ports)
return out
[docs] def rotate(self, theta: NumberLike, unit: str = 'deg') -> None:
"""
Rotate S-parameters
"""
if unit == 'deg':
theta = mf.degree_2_radian(theta )
self.s = self.s * npy.exp(-1j*theta)
[docs] def delay(self, d: float, unit: str = 'deg', port: int = 0, media: Any = None, **kw) -> 'Network':
"""
Add phase delay to a given port.
This will connect a transmission line of length `d/2` to the selected `port`. If no propagation properties are
specified for the line (`media=None`), then freespace is assumed to convert a distance `d` into an electrical
length. If a phase angle is specified for `d`, it will be evaluated at the center frequency of the network.
Parameters
----------
d : float
The angle/length/delay of the transmission line (see `unit` argument)
unit : ['deg','rad','m','cm','um','in','mil','s','us','ns','ps']
The units of d. See :func:`Media.to_meters`, for details
port : int
Port to add the delay to.
media: skrf.media.Media
Media object to use for generating the delay. If None, this will
default to freespace.
Returns
-------
ntwk : :class:`Network` object
A delayed copy of the `Network`.
"""
if d ==0:
return self
d=d/2.
if media is None:
from .media import Freespace
media = Freespace(frequency=self.frequency,
z0_override = self.z0[:,port])
l =media.line(d=d, unit=unit,**kw)
return connect(self, port, l, 0)
[docs] def windowed(self, window: Union[str, float, Tuple[str, float]]=('kaiser', 6),
normalize: bool = True, center_to_dc: bool = None) -> 'Network':
"""
Return a windowed version of s-matrix. Used in time-domain analysis.
When using time domain through :attr:`s_time_db`,
or similar properties, the spectrum is usually windowed,
before the IFFT is taken. This is done to
compensate for the band-pass nature of a spectrum [#]_.
This function calls :func:`scipy.signal.get_window` which gives
more details about the windowing.
Parameters
----------
window : string, float, or tuple
The type of window to create. See :func:`scipy.signal.get_window`
for details.
normalize : bool
Normalize the window to preserve power. ie
sum(ntwk.s,axis=0) == sum(ntwk.windowed().s,axis=0)
center_to_dc : bool or None
If True only the positive half of the window is applied to the signal.
This should be used if frequency vector begins from DC or from "close enough" to DC.
If False full window is used which also attenuates low frequencies.
If None then value is determined automatically based on if frequency
vector begins from 0.
Returns
-------
ntwk : :class:`Network` object
Resulting windowed Network
Examples
--------
>>> ntwk = rf.Network('myfile.s2p')
>>> ntwk_w = ntwk.windowed()
>>> ntwk_w.plot_s_time_db()
References
----------
.. [#] Agilent Time Domain Analysis Using a Network Analyzer Application Note 1287-12
"""
if center_to_dc is None:
center_to_dc = self.frequency.f[0] == 0
if center_to_dc:
window = signal.get_window(window, 2*len(self))[len(self):]
else:
window = signal.get_window(window, len(self))
window = window.reshape(-1, 1, 1) * npy.ones((len(self),
self.nports,
self.nports))
windowed = self * window
if normalize:
# normalize the s-parameters to account for power lost in windowing
windowed.s = windowed.s * npy.sum(self.s_mag, axis=0) / \
npy.sum(windowed.s_mag, axis=0)
return windowed
[docs] def time_gate(self, *args, **kw) -> 'Network':
"""
Time gate this Network.
Returns
-------
ntwk : :class:`Network` object
Resulting time-gated Network
see `skrf.time_domain.time_gate`
"""
return time_gate(self, *args, **kw)
# noise
[docs] def add_noise_polar(self, mag_dev: float, phase_dev: float, **kwargs) -> None:
"""
Adds a complex zero-mean gaussian white-noise.
adds a complex zero-mean gaussian white-noise of a given
standard deviation for magnitude and phase
Parameters
----------
mag_dev : number
standard deviation of magnitude
phase_dev : number
standard deviation of phase [in degrees]
"""
phase_rv = stats.norm(loc=0, scale=phase_dev).rvs(size=self.s.shape)
mag_rv = stats.norm(loc=0, scale=mag_dev).rvs(size=self.s.shape)
phase = (self.s_deg + phase_rv)
mag = self.s_mag + mag_rv
self.s = mag * npy.exp(1j * npy.pi / 180. * phase)
[docs] def add_noise_polar_flatband(self, mag_dev: float, phase_dev: float, **kwargs) -> None:
"""
Add a flatband complex zero-mean gaussian white-noise signal of
given standard deviations for magnitude and phase.
Parameters
----------
mag_dev : number
standard deviation of magnitude
phase_dev : number
standard deviation of phase [in degrees]
"""
phase_rv = stats.norm(loc=0, scale=phase_dev).rvs(size=self.s[0].shape)
mag_rv = stats.norm(loc=0, scale=mag_dev).rvs(size=self.s[0].shape)
phase = (self.s_deg + phase_rv)
mag = self.s_mag + mag_rv
self.s = mag * npy.exp(1j * npy.pi / 180. * phase)
[docs] def multiply_noise(self, mag_dev: float, phase_dev: float, **kwargs) -> None:
"""
Multiply a complex bivariate gaussian white-noise signal
of given standard deviations for magnitude and phase.
The mean of the magnitude is 1, and the mena of the phase is 0.
Parameters
----------
mag_dev: float
standard deviation of magnitude
phase_dev: float
standard deviation of phase [in degrees]
"""
phase_rv = stats.norm(loc=0, scale=phase_dev).rvs( \
size=self.s.shape)
mag_rv = stats.norm(loc=1, scale=mag_dev).rvs( \
size=self.s.shape)
self.s = mag_rv * npy.exp(1j * npy.pi / 180. * phase_rv) * self.s
[docs] def nudge(self, amount: float = 1e-12) -> 'Network':
"""
Perturb s-parameters by small amount.
This is useful to work-around numerical bugs.
Parameters
----------
amount : float
amount to add to s parameters
Returns
-------
ntwk : :class:`Network` object
Resulting renumbered Network
Note
----
This function is::
self.s = self.s + amount
"""
self.s = self.s + amount
# other
[docs] def func_on_parameter(self, func: Callable, attr: str = 's', *args, **kwargs) -> 'Network':
r"""
Apply a function parameter matrix, one frequency slice at a time.
This is useful for functions that can only operate on 2d arrays,
like numpy.linalg.inv. This loops over f and calls
`func(ntwkA.s[f,:,:], \*args, \*\*kwargs)`
Parameters
----------
func : func
function to apply to s-parameters, on a single-frequency slice.
(ie `func(ntwkA.s[0,:,:], \*args, \*\*kwargs)`
attr: string
Name of the parameter to operate on. Ex: 's', 'z', etc.
Default is 's'.
\*args, \*\*kwargs :
passed to the func
Returns
-------
ntwk : :class:`Network` object
Resulting renumbered Network
Examples
--------
>>> from numpy.linalg import inv
>>> ntwk.func_on_parameter(inv)
"""
ntwkB = self.copy()
p = getattr(self, attr)
ntwkB.s = npy.r_[[func(p[k, :, :], *args, **kwargs) \
for k in range(len(p))]]
return ntwkB
[docs] def nonreciprocity(self, m: int, n: int, normalize: bool = False) -> 'Network':
r"""
Normalized non-reciprocity metric.
This is a port-by-port measure of how non-reciprocal an n-port
network is. It is defined by,
.. math::
(S_{mn} - S_{nm}) / \sqrt ( S_{mn} S_{nm} )
Parameters
----------
m : int
m index
n : int
n index
normalize : bool
Normalize the result. Default is False.
Returns
-------
ntwk : :class:`Network` object
Resulting renumbered Network
"""
forward = getattr(self, f"s{m}_{n}")
reverse = getattr(self, f"s{n}_{m}")
if normalize:
denom = forward * reverse
denom.s = npy.sqrt(denom.s)
return (forward - reverse) / denom
else:
return (forward - reverse)
# generalized mixed mode transformations
[docs] def se2gmm(self, p: int, z0_mm: npy.ndarray = None, s_def : str = None) -> None:
"""
Transform network from single ended parameters to generalized mixed mode parameters [#]_.
Parameters
----------
p : int
number of differential ports
z0_mm : Numpy array
`f x 2*p x 2*p` matrix of mixed mode impedances, optional.
If input is None, 2 * z0 Ohms differential and z0 / 2 Ohms common mode
reference impedance is used, where z0 is average of the differential
pair ports reference impedance.
Single-ended ports not converted to differential mode keep their z0.
s_def : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition :
None to use the definition set in the network `s_def` attribute.
'power' for power-waves definition [#Kurokawa]_,
'pseudo' for pseudo-waves definition [#Marks]_.
All the definitions give the same result if z0 is real valued.
Note Odd Number of Ports
In the case where there are an odd number of ports (such as a 3-port network
with ports 0, 1, and 2), se2gmm() assumes that the last port (port 2) remains
single-ended and ports 0 and 1 are converted to differential mode and common
mode, respectively. For networks in which the port ordering is not suitable,
port renumbering can be used.
Examples
--------
For example, a 3-port single-ended network is converted to mixed-mode
parameters::
| Port 0 (single-ended, 50 ohms) --> Port 0 (single-ended, 50 ohms)
| Port 1 (single-ended, 50 ohms) --> Port 1 (differential mode, 100 ohms)
| Port 2 (single-ended, 50 ohms) --> Port 2 (common mode, 25 ohms)
>>> ntwk.renumber([0,1,2], [2,1,0])
>>> ntwk.se2gmm(p=1)
>>> ntwk.renumber([2,1,0], [0,1,2])
In the resulting network, port 0 is single-ended, port 1 is
differential mode, and port 2 is common mode.
In following examples, sx is single-mode port x, dy is
differential-mode port y, and cz is common-mode port z. The low
insertion loss path of a transmission line is symbolized by ==.
2-Port diagram::
+-----+ +-----+
0-|s0 | 0-|d0 |
| | =se2gmm=> | |
1-|s1 | 1-|c0 |
+-----+ +-----+
3-Port diagram::
+-----+ +-----+
0-|s0 | 0-|d0 |
1-|s1 | =se2gmm=> 1-|c0 |
2-|s2 | 2-|s2 |
+-----+ +-----+
Note: The port s2 remain in single-mode.
4-Port diagram::
+------+ +------+
0-|s0==s2|-2 0-|d0==d1|-1
| | =se2gmm=> | |
1-|s1==s3|-3 2-|c0==c1|-3
+------+ +------+
5-Port diagram::
+------+ +------+
0-|s0==s2|-2 0-|d0==d1|-1
1-|s1==s3|-3 =se2gmm=> 2-|c0==c1|-3
| s4|-4 | s4|-4
+------+ +------+
Note: The port s4 remain in single-mode.
8-Port diagram::
+------+ +------+
0-|s0==s2|-2 0-|d0==d1|-1
1-|s1==s3|-3 2-|d2==d3|-3
| | =se2gmm=> | |
4-|s4==s6|-6 4-|c0==c1|-5
5-|s5==s7|-7 6-|c2==c3|-7
+------+ +------+
2N-Port diagram::
A B
+------------+ +-----------+
0-|s0========s2|-2 0-|d0=======d1|-1
1-|s1========s3|-3 2-|d2=======d3|-3
... ... =se2gmm=> ... ...
2N-4-|s2N-4==s2N-2|-2N-2 2N-4-|cN-4===cN-3|-2N-3
2N-3-|s2N-3==s2N-1|-2N-1 2N-2-|cN-2===cN-1|-2N-1
+------------+ +-----------+
Note: The network `A` is not cascadable with the `**` operator
along transmission path.
References
----------
.. [#] Ferrero and Pirola; Generalized Mixed-Mode S-Parameters; IEEE Transactions on
Microwave Theory and Techniques; Vol. 54; No. 1; Jan 2006
.. [#Kurokawa] Kurokawa, Kaneyuki "Power waves and the scattering matrix",
IEEE Transactions on Microwave Theory and Techniques, vol.13, iss.2, pp. 194–202, March 1965.
.. [#Marks] Marks, R. B. and Williams, D. F. "A general waveguide circuit theory",
Journal of Research of National Institute of Standard and Technology, vol.97, iss.5, pp. 533–562, 1992.
See Also
--------
gmm2se
"""
if 2*p > self.nports or p < 0:
raise ValueError('Invalid number of differential ports')
if s_def is None:
s_def = self.s_def
if s_def != self.s_def:
# Need to first renormalize to the new s_def if we have complex ports
self.renormalize(self.z0, s_def)
self.s_def = s_def
# Assumes 'proper' order (first differential ports, then single ended ports)
if z0_mm is None:
z0_mm = self.z0.copy()
z0_avg = 0.5*(z0_mm[:, 0:2*p:2] + z0_mm[:, 1:2*p:2])
z0_mm[:, 0:p] = 2*z0_avg # differential mode impedance
z0_mm[:, p:2 * p] = 0.5*z0_avg # common mode impedance
else:
# Make sure shape is correct
# Only set mixed mode ports
_z0_mm = self.z0.copy()
shape = [self.z0.shape[0], 2 * p]
z0_p = npy.broadcast_to(z0_mm, shape)
_z0_mm[:,:2*p] = z0_p
z0_mm = _z0_mm
Xi_tilde_11, Xi_tilde_12, Xi_tilde_21, Xi_tilde_22 = self._Xi_tilde(p, self.z0, z0_mm, s_def)
A = Xi_tilde_21 + npy.einsum('...ij,...jk->...ik', Xi_tilde_22, self.s)
B = Xi_tilde_11 + npy.einsum('...ij,...jk->...ik', Xi_tilde_12, self.s)
self.s = mf.rsolve(B, A)
self.z0 = z0_mm
[docs] def gmm2se(self, p: int, z0_se: NumberLike = None, s_def : str = None) -> None:
"""
Transform network from generalized mixed mode parameters [#]_ to single ended parameters.
Parameters
----------
p : int
number of differential ports
z0_se: Numpy array
`f x 2*p x 2*p` matrix of single ended impedances, optional
if input is None, extract the reference impedance from the differential network
calculated as 0.5 * (0.5 * z0_diff + 2 * z0_comm) for each differential port.
Single-ended ports not converted to differential mode keep their z0.
s_def : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition:
None to use the definition set in the network `s_def` attribute.
'power' for power-waves definition [#Kurokawa]_,
'pseudo' for pseudo-waves definition [#Marks]_.
All the definitions give the same result if z0 is real valued.
Examples
--------
In following examples, sx is single-mode port x, dy is
differential-mode port y, and cz is common-mode port z. The low
insertion loss path of a transmission line is symbolized by ==.
2-Port diagram::
+-----+ +-----+
0-|s0 | 0-|d0 |
| | <=gmm2se= | |
1-|s1 | 1-|c0 |
+-----+ +-----+
3-Port diagram::
+-----+ +-----+
0-|s0 | 0-|d0 |
1-|s1 | <=gmm2se= 1-|c0 |
2-|s2 | 2-|s2 |
+-----+ +-----+
Note: The port s2 remain in single-mode.
4-Port diagram::
+------+ +------+
0-|s0==s2|-2 0-|d0==d1|-1
| | <=gmm2se= | |
1-|s1==s3|-3 2-|c0==c1|-3
+------+ +------+
5-Port diagram::
+------+ +------+
0-|s0==s2|-2 0-|d0==d1|-1
1-|s1==s3|-3 <=gmm2se= 2-|c0==c1|-3
| s4|-4 | s4|-4
+------+ +------+
Note: The port s4 remain in single-mode.
8-Port diagram::
+------+ +------+
0-|s0==s2|-2 0-|d0==d1|-1
1-|s1==s3|-3 2-|d2==d3|-3
| | <=gmm2se= | |
4-|s4==s6|-6 4-|c0==c1|-5
5-|s5==s7|-7 6-|c2==c3|-7
+------+ +------+
2N-Port diagram::
A B
+------------+ +-----------+
0-|s0========s2|-2 0-|d0=======d1|-1
1-|s1========s3|-3 2-|d2=======d3|-3
... ... <=gmm2se= ... ...
2N-4-|s2N-4==s2N-2|-2N-2 2N-4-|cN-4===cN-3|-2N-3
2N-3-|s2N-3==s2N-1|-2N-1 2N-2-|cN-2===cN-1|-2N-1
+------------+ +-----------+
Note: The network `A` is not cascadable with the `**` operator
along transmission path.
References
----------
.. [#] Ferrero and Pirola; Generalized Mixed-Mode S-Parameters; IEEE Transactions on
Microwave Theory and Techniques; Vol. 54; No. 1; Jan 2006
.. [#Kurokawa] Kurokawa, Kaneyuki "Power waves and the scattering matrix",
IEEE Transactions on Microwave Theory and Techniques, vol.13, iss.2, pp. 194–202, March 1965.
.. [#Marks] Marks, R. B. and Williams, D. F. "A general waveguide circuit theory",
Journal of Research of National Institute of Standard and Technology, vol.97, iss.5, pp. 533–562, 1992.
See Also
--------
se2gmm
"""
if 2*p > self.nports or p < 0:
raise ValueError('Invalid number of differential ports')
if s_def is None:
s_def = self.s_def
if s_def != self.s_def:
# Need to first renormalize to the new s_def if we have complex ports
self.renormalize(self.z0, s_def)
self.s_def = s_def
# Assumes 'proper' order (differential ports, single ended ports)
if z0_se is None:
z0_se = self.z0.copy()
z0_avg = 0.5*(0.5*z0_se[:, 0:p] + 2*z0_se[:, p:2*p])
z0_se[:, 0:p] = z0_avg
z0_se[:, p:2 * p] = z0_avg
else:
# Make sure shape is correct
# Only set mixed mode ports
_z0_se = self.z0.copy()
shape = [self.z0.shape[0], 2 * p]
z0_p = npy.broadcast_to(z0_se, shape)
_z0_se[:,:2*p] = z0_p
z0_se = _z0_se
Xi_tilde_11, Xi_tilde_12, Xi_tilde_21, Xi_tilde_22 = self._Xi_tilde(p, z0_se, self.z0, s_def)
A = Xi_tilde_22 - npy.einsum('...ij,...jk->...ik', self.s, Xi_tilde_12)
# Note that B sign is incorrect in the paper. Inverted B here gives the
# correct result.
B = -Xi_tilde_21 + npy.einsum('...ij,...jk->...ik', self.s, Xi_tilde_11)
self.s = npy.linalg.solve(A, B) # (35)
self.z0 = z0_se
# generalized mixed mode supplement functions
_T = npy.array([[1, 0, -1, 0], [0, 0.5, 0, -0.5], [0.5, 0, 0.5, 0], [0, 1, 0, 1]]) # (5)
def _m(self, z0: npy.ndarray, s_def : str) -> npy.ndarray:
if s_def == 'pseudo':
scaling = npy.sqrt(z0.real) / (2 * npy.abs(z0))
Z = npy.ones((z0.shape[0], 2, 2), dtype=npy.complex128)
Z[:, 0, 1] = z0
Z[:, 1, 1] = -z0
return scaling[:, npy.newaxis, npy.newaxis] * Z
elif s_def == 'power':
scaling = 1 / (2 * npy.sqrt(z0.real))
Z = npy.ones((z0.shape[0], 2, 2), dtype=npy.complex128)
Z[:, 0, 1] = z0
Z[:, 1, 1] = -z0.conj()
return scaling[:, npy.newaxis, npy.newaxis] * Z
elif s_def == 'traveling':
Z = npy.ones((z0.shape[0], 2, 2), dtype=npy.complex128)
sqrtz0 = npy.sqrt(z0)
Z[:, 0, 0] = 1 / sqrtz0
Z[:, 0, 1] = sqrtz0
Z[:, 1, 0] = 1 / sqrtz0
Z[:, 1, 1] = -sqrtz0
return 0.5 * Z
else:
raise ValueError('Unknown s_def')
def _M(self, j: int, k: int, z0_se: npy.ndarray, s_def : str) -> npy.ndarray: # (14)
M = npy.zeros((self.f.shape[0], 4, 4), dtype=npy.complex128)
M[:, :2, :2] = self._m(z0_se[:, j], s_def)
M[:, 2:, 2:] = self._m(z0_se[:, k], s_def)
return M
def _M_circle(self, l: int, p: int, z0_mm: npy.ndarray, s_def : str) -> npy.ndarray: # (12)
M = npy.zeros((self.f.shape[0], 4, 4), dtype=npy.complex128)
M[:, :2, :2] = self._m(z0_mm[:, l], s_def) # differential mode impedance of port pair
M[:, 2:, 2:] = self._m(z0_mm[:, p + l], s_def) # common mode impedance of port pair
return M
def _X(self, j: int, k: int , l: int, p: int, z0_se: npy.ndarray, z0_mm: npy.ndarray, s_def : str) -> npy.ndarray: # (15)
return npy.einsum('...ij,...jk->...ik', self._M_circle(l, p, z0_mm, s_def).dot(self._T),
npy.linalg.inv(self._M(j, k, z0_se, s_def))) # matrix multiplication elementwise for each frequency
def _P(self, p: int) -> npy.ndarray: # (27) (28)
n = self.nports
Pda = npy.zeros((p, 2 * n), dtype=bool)
Pdb = npy.zeros((p, 2 * n), dtype=bool)
Pca = npy.zeros((p, 2 * n), dtype=bool)
Pcb = npy.zeros((p, 2 * n), dtype=bool)
Pa = npy.zeros((n - 2 * p, 2 * n), dtype=bool)
Pb = npy.zeros((n - 2 * p, 2 * n), dtype=bool)
for l in npy.arange(p):
Pda[l, 4 * (l + 1) - 3 - 1] = True
Pca[l, 4 * (l + 1) - 1 - 1] = True
Pdb[l, 4 * (l + 1) - 2 - 1] = True
Pcb[l, 4 * (l + 1) - 1] = True
for l in npy.arange(n - 2 * p):
Pa[l, 4 * p + 2 * (l + 1) - 1 - 1] = True
Pb[l, 4 * p + 2 * (l + 1) - 1] = True
return npy.concatenate((Pda, Pca, Pa, Pdb, Pcb, Pb))
def _Q(self) -> npy.ndarray: # (29) error corrected
n = self.nports
Qa = npy.zeros((n, 2 * n), dtype=bool)
Qb = npy.zeros((n, 2 * n), dtype=bool)
for l in npy.arange(n):
Qa[l, 2 * (l + 1) - 1 - 1] = True
Qb[l, 2 * (l + 1) - 1] = True
return npy.concatenate((Qa, Qb))
def _Xi(self, p: int, z0_se: npy.ndarray, z0_mm: npy.ndarray, s_def : str) -> npy.ndarray: # (24)
n = self.nports
Xi = npy.ones(self.f.shape[0])[:, npy.newaxis, npy.newaxis] * npy.eye(2 * n, dtype=npy.complex128)
for l in npy.arange(p):
Xi[:, 4 * l:4 * l + 4, 4 * l:4 * l + 4] = self._X(l * 2, l * 2 + 1, l, p, z0_se, z0_mm, s_def)
return Xi
def _Xi_tilde(self, p: int, z0_se: npy.ndarray, z0_mm: npy.ndarray, s_def : str) -> npy.ndarray: # (31)
n = self.nports
P = npy.ones(self.f.shape[0])[:, npy.newaxis, npy.newaxis] * self._P(p)
QT = npy.ones(self.f.shape[0])[:, npy.newaxis, npy.newaxis] * self._Q().T
Xi = self._Xi(p, z0_se, z0_mm, s_def)
Xi_tilde = npy.einsum('...ij,...jk->...ik', npy.einsum('...ij,...jk->...ik', P, Xi), QT)
return Xi_tilde[:, :n, :n], Xi_tilde[:, :n, n:], Xi_tilde[:, n:, :n], Xi_tilde[:, n:, n:]
[docs] def impulse_response(self, window: str = 'hamming', n: int = None, pad: int = 1000,
bandpass: bool = None, squeeze: bool = True) -> Tuple[npy.ndarray, npy.ndarray]:
"""Calculate time-domain impulse response of one-port.
First frequency must be 0 Hz for the transformation to be accurate and
the frequency step must be uniform. Positions of the reflections are
accurate even if the frequency doesn't begin from 0, but shapes will
be distorted.
Real measurements should be extrapolated to DC and interpolated to
uniform frequency spacing.
Y-axis is the reflection coefficient.
Parameters
----------
window : string
FFT windowing function.
n : int
Length of impulse response output.
If n is not specified, 2 * (m - 1) points are used,
where m = len(self) + pad
pad : int
Number of zeros to add as padding for FFT.
Adding more zeros improves accuracy of peaks.
bandpass : bool or None
If False window function is center on 0 Hz.
If True full window is used and low frequencies are attenuated.
If None value is determined automatically based on if the
frequency vector begins from 0.
squeeze: bool
Squeeze impulse response to one dimension,
if a oneport gets transformed.
Has no effect when transforming a multiport.
Default = True
Returns
-------
t : class:`npy.ndarray`
Time vector
y : class:`npy.ndarray`
Impulse response
See Also
--------
step_response
extrapolate_to_dc
"""
if n is None:
# Use zero-padding specification. Note that this does not allow n odd.
n = 2 * (self.frequency.npoints + pad - 1)
fstep = self.frequency.step
if n % 2 == 0:
t = npy.fft.ifftshift(npy.fft.fftfreq(n, fstep))
else:
t = npy.fft.ifftshift(npy.fft.fftfreq(n+1, fstep))[1:]
if bandpass in (True, False):
center_to_dc = not bandpass
else:
center_to_dc = None
if window is not None:
w = self.windowed(window=window, normalize=False, center_to_dc=center_to_dc)
else:
w = self
ir = mf.irfft(w.s, n=n)
if squeeze:
ir = ir.squeeze()
return t, ir
[docs] def step_response(
self, window: str = 'hamming', n: int = None, pad: int = 1000, squeeze: bool = True
) -> Tuple[npy.ndarray, npy.ndarray]:
"""Calculate time-domain step response of one-port.
First frequency must be 0 Hz for the transformation to be accurate and
the frequency step must be uniform.
Real measurements should be extrapolated to DC and interpolated to
uniform frequency spacing.
Y-axis is the reflection coefficient.
Parameters
----------
window : string
FFT windowing function.
n : int
Length of step response output.
If n is not specified, 2 * (m - 1) points are used,
where m = len(self) + pad
pad : int
Number of zeros to add as padding for FFT.
Adding more zeros improves accuracy of peaks.
squeeze: bool
Squeeze step response to one dimension,
if a oneport gets transformed.
Has no effect when transforming a multiport.
Default = True
Returns
-------
t : class:`npy.ndarray`
Time vector
y : class:`npy.ndarray`
Step response
Raises
------
ValueError
If used with an Network with more than one port
NotImplementedError
If used with non equidistant sampled frequency vector
See Also
--------
impulse_response
extrapolate_to_dc
"""
if self.frequency.sweep_type != 'lin':
raise NotImplementedError(
'Unable to transform non equidistant sampled points to time domain')
if self.frequency.f[0] != 0:
warnings.warn(
"Frequency doesn't begin from 0. Step response will not be correct.",
RuntimeWarning
)
t, y = self.impulse_response(window=window, n=n, pad=pad, bandpass=False, squeeze=squeeze)
return t, npy.cumsum(y, axis=0)
# Network Active s/z/y/vswr parameters
[docs] def s_active(self, a: npy.ndarray) -> npy.ndarray:
r"""
Returns the active s-parameters of the network for a defined wave excitation a.
The active s-parameter at a port is the reflection coefficients
when other ports are excited. It is an important quantity for active
phased array antennas.
Active s-parameters are defined by [#]_:
.. math::
\mathrm{active(s)}_{m} = \sum_{i=1}^N s_{mi}\frac{a_i}{a_m}
where :math:`s` are the scattering parameters and :math:`N` the number of ports
Parameters
----------
a : complex array of shape (n_ports)
forward wave complex amplitude (pseudowave formulation [#]_)
Returns
-------
s_act : complex array of shape (n_freqs, n_ports)
active S-parameters for the excitation a
See Also
--------
z_active : active Z-parameters
y_active : active Y-parameters
vswr_active : active VSWR
References
----------
.. [#] D. M. Pozar, IEEE Trans. Antennas Propag. 42, 1176 (1994).
.. [#] D. Williams, IEEE Microw. Mag. 14, 38 (2013).
"""
return s2s_active(self.s, a)
[docs] def z_active(self, a: npy.ndarray) -> npy.ndarray:
r"""
Return the active Z-parameters of the network for a defined wave excitation a.
The active Z-parameters are defined by:
.. math::
\mathrm{active}(z)_{m} = z_{0,m} \frac{1 + \mathrm{active}(s)_m}{1 - \mathrm{active}(s)_m}
where :math:`z_{0,m}` is the characteristic impedance and
:math:`\mathrm{active}(s)_m` the active S-parameter of port :math:`m`.
Parameters
----------
a : complex array of shape (n_ports)
forward wave complex amplitude
Returns
-------
z_act : complex array of shape (nfreqs, nports)
active Z-parameters for the excitation a
See Also
--------
s_active : active S-parameters
y_active : active Y-parameters
vswr_active : active VSWR
"""
return s2z_active(self.s, self.z0, a)
[docs] def y_active(self, a: npy.ndarray) -> npy.ndarray:
r"""
Return the active Y-parameters of the network for a defined wave excitation a.
The active Y-parameters are defined by:
.. math::
\mathrm{active}(y)_{m} = y_{0,m} \frac{1 - \mathrm{active}(s)_m}{1 + \mathrm{active}(s)_m}
where :math:`y_{0,m}` is the characteristic admittance and
:math:`\mathrm{active}(s)_m` the active S-parameter of port :math:`m`.
Parameters
----------
a : complex array of shape (n_ports)
forward wave complex amplitude
Returns
-------
y_act : complex array of shape (nfreqs, nports)
active Y-parameters for the excitation a
See Also
--------
s_active : active S-parameters
z_active : active Z-parameters
vswr_active : active VSWR
"""
return s2y_active(self.s, self.z0, a)
[docs] def vswr_active(self, a: npy.ndarray) -> npy.ndarray:
r"""
Return the active VSWR of the network for a defined wave excitation a.
The active VSWR is defined by :
.. math::
\mathrm{active}(vswr)_{m} = \frac{1 + |\mathrm{active}(s)_m|}{1 - |\mathrm{active}(s)_m|}
where :math:`\mathrm{active}(s)_m` the active S-parameter of port :math:`m`.
Parameters
----------
a : complex array of shape (n_ports)
forward wave complex amplitude
Returns
-------
vswr_act : complex array of shape (nfreqs, nports)
active VSWR for the excitation a
See Also
--------
s_active : active S-parameters
z_active : active Z-parameters
y_active : active Y-parameters
"""
return s2vswr_active(self.s, a)
for func_name, (_func, prop_name, conversion) in Network._generated_functions().items():
func_name = f"{prop_name}_{conversion}"
doc = f"""
The {conversion} component of the {prop_name}-matrix.
See Also
--------
{prop_name}
"""
setattr(Network, func_name, property(
fget=lambda self,
prop_name=prop_name,
conversion=conversion:
self.attribute(prop_name, conversion), doc=doc))
COMPONENT_FUNC_DICT = Network.COMPONENT_FUNC_DICT
PRIMARY_PROPERTIES = Network.PRIMARY_PROPERTIES
Y_LABEL_DICT = Network.Y_LABEL_DICT
## Functions operating on Network[s]
[docs]def connect(ntwkA: Network, k: int, ntwkB: Network, l: int, num: int = 1) -> Network:
"""
Connect two n-port networks together.
Connect ports `k` thru `k+num-1` on `ntwkA` to ports
`l` thru `l+num-1` on `ntwkB`. The resultant network has
(ntwkA.nports+ntwkB.nports-2*num) ports. The port indices ('k','l')
start from 0. Port impedances **are** taken into account.
When the two networks have overlapping frequencies, the resulting
network will contain only the overlapping frequencies.
Note
----
The effect of mis-matched port impedances is handled by inserting
a 2-port 'mismatch' network between the two connected ports.
This mismatch Network is calculated with the
:func:`impedance_mismatch` function.
Parameters
----------
ntwkA : :class:`Network`
network 'A'
k : int
starting port index on `ntwkA` ( port indices start from 0 )
ntwkB : :class:`Network`
network 'B'
l : int
starting port index on `ntwkB`
num : int
number of consecutive ports to connect (default 1)
Returns
-------
ntwkC : :class:`Network`
new network of rank (ntwkA.nports + ntwkB.nports - 2*num)
See Also
--------
connect_s : actual S-parameter connection algorithm.
innerconnect_s : actual S-parameter connection algorithm.
Examples
--------
To implement a *cascade* of two networks
>>> ntwkA = rf.Network('ntwkA.s2p')
>>> ntwkB = rf.Network('ntwkB.s2p')
>>> ntwkC = rf.connect(ntwkA, 1, ntwkB,0)
"""
# some checking
try:
check_frequency_equal(ntwkA, ntwkB)
except IndexError as e:
common_freq = npy.intersect1d(ntwkA.frequency.f, ntwkB.frequency.f, return_indices=True)
if common_freq[0].size == 0:
raise e
else:
ntwkA = ntwkA[common_freq[1]]
ntwkB = ntwkB[common_freq[2]]
warnings.warn("Using a frequency subset:\n" + str(ntwkA.frequency))
if (k + num - 1 > ntwkA.nports - 1):
raise IndexError('Port `k` out of range')
if (l + num - 1 > ntwkB.nports - 1):
raise IndexError('Port `l` out of range')
have_complex_ports = (ntwkA.z0.imag != 0).any() or (ntwkB.z0.imag != 0).any()
# If definitions aren't identical and there are complex ports renormalize first
# Output will have ntwkA s_def if they are different.
if ntwkA.s_def != ntwkB.s_def and have_complex_ports:
warnings.warn('Connecting two networks with different s_def and complex ports. '
'The resulting network will have s_def of the first network: ' + ntwkA.s_def + '. '\
'To silence this warning explicitly convert the networks to same s_def '
'using `renormalize` function.')
ntwkB = ntwkB.copy()
ntwkB.renormalize(ntwkB.z0, ntwkA.s_def)
s_def_original = ntwkA.s_def
if ntwkA.s_def == 'power' and have_complex_ports:
# When port impedance is complex, power-waves are discontinuous across
# a junction between two identical transmission lines while traveling
# waves and pseudo-waves are continuous. The connection algorithm relies
# on continuity and 'power' networks must be first converted to either
# of the other definition.
ntwkA = ntwkA.copy()
ntwkA.renormalize(ntwkA.z0, 'pseudo')
ntwkB = ntwkB.copy()
ntwkB.renormalize(ntwkB.z0, 'pseudo')
s_def = ntwkA.s_def
if s_def == 'power':
# Ports are real. Save some time by not copying the networks
# and use the definition that works with real ports
s_def = 'traveling'
# create output Network, from copy of input
ntwkC = ntwkA.copy()
# if networks' z0's are not identical, then connect a impedance
# mismatch, which takes into account the effect of differing port
# impedances.
# import pdb;pdb.set_trace()
if not assert_z0_at_ports_equal(ntwkA, k, ntwkB, l):
ntwkC.s = connect_s(
ntwkA.s, k,
impedance_mismatch(ntwkA.z0[:, k], ntwkB.z0[:, l], s_def), 0)
# the connect_s() put the mismatch's output port at the end of
# ntwkC's ports. Fix the new port's impedance, then insert it
# at position k where it belongs.
ntwkC.z0[:, k:] = npy.hstack((ntwkC.z0[:, k + 1:], ntwkB.z0[:, [l]]))
ntwkC.renumber(from_ports=[ntwkC.nports - 1] + list(range(k, ntwkC.nports - 1)),
to_ports=list(range(k, ntwkC.nports)))
# call s-matrix connection function
ntwkC.s = connect_s(ntwkC.s, k, ntwkB.s, l)
# combine z0 arrays and remove ports which were `connected`
ntwkC.z0 = npy.hstack(
(npy.delete(ntwkA.z0, range(k, k + 1), 1), npy.delete(ntwkB.z0, range(l, l + 1), 1)))
# if we're connecting more than one port, call innerconnect recursively
# until all connections are made to finish the job
if num > 1:
ntwkC = innerconnect(ntwkC, k, ntwkA.nports - 1 + l, num - 1)
# if ntwkB is a 2port, then keep port indices where you expect.
if ntwkB.nports == 2 and ntwkA.nports > 2 and num == 1:
from_ports = list(range(ntwkC.nports))
to_ports = list(range(ntwkC.nports))
to_ports.pop(k)
to_ports.append(k)
ntwkC.renumber(from_ports=from_ports,
to_ports=to_ports)
# if ntwkA and ntwkB are both 2port, and either one has noise, calculate ntwkC's noise
either_are_noisy = False
either_are_noisy = ntwkA.noisy or ntwkB.noisy
if num == 1 and ntwkA.nports == 2 and ntwkB.nports == 2 and either_are_noisy:
if ntwkA.noise_freq is not None and ntwkB.noise_freq is not None and ntwkA.noise_freq != ntwkB.noise_freq:
raise IndexError('Networks must have same noise frequency. See `Network.interpolate`')
cA = ntwkA.noise
cB = ntwkB.noise
noise_freq = ntwkA.noise_freq
if noise_freq is None:
noise_freq = ntwkB.noise_freq
if cA is None:
cA = npy.broadcast_arrays(npy.array([[0., 0.], [0., 0.]]), ntwkB.noise)[0]
if cB is None:
cB = npy.broadcast_arrays(npy.array([[0., 0.], [0., 0.]]), ntwkA.noise)[0]
if k == 0:
# if we're connecting to the "input" port of ntwkA, recalculate the equivalent noise of ntwkA,
# since we're modeling the noise as a pair of sources at the "input" port
# TODO
raise (NotImplementedError)
if l == 1:
# if we're connecting to the "output" port of ntwkB, recalculate the equivalent noise,
# since we're modeling the noise as a pair of sources at the "input" port
# TODO
raise (NotImplementedError)
# interpolate abcd into the set of noise frequencies
if ntwkA.deembed :
if ntwkA.frequency.f.size > 1 :
a_real = interp1d(ntwkA.frequency.f, ntwkA.inv.a.real,
axis=0, kind=Network.noise_interp_kind)
a_imag = interp1d(ntwkA.frequency.f, ntwkA.inv.a.imag,
axis=0, kind=Network.noise_interp_kind)
a = a_real(noise_freq.f) + 1.j * a_imag(noise_freq.f)
else :
a_real = ntwkA.inv.a.real
a_imag = ntwkA.inv.a.imag
a = a_real + 1.j * a_imag
a = npy_inv(a)
a_H = npy.conj(a.transpose(0, 2, 1))
cC = npy.matmul(a, npy.matmul(cB -cA, a_H))
else :
if ntwkA.frequency.f.size > 1 :
a_real = interp1d(ntwkA.frequency.f, ntwkA.a.real,
axis=0, kind=Network.noise_interp_kind)
a_imag = interp1d(ntwkA.frequency.f, ntwkA.a.imag,
axis=0, kind=Network.noise_interp_kind)
a = a_real(noise_freq.f) + 1.j * a_imag(noise_freq.f)
else :
a_real = ntwkA.a.real
a_imag = ntwkA.a.imag
a = a_real + 1.j * a_imag
a_H = npy.conj(a.transpose(0, 2, 1))
cC = npy.matmul(a, npy.matmul(cB, a_H)) + cA
ntwkC.noise = cC
ntwkC.noise_freq = noise_freq
if ntwkC.s_def != s_def_original:
ntwkC.renormalize(ntwkC.z0, s_def_original)
return ntwkC
def connect_fast(ntwkA: Network, k: int, ntwkB: Network, l: int) -> Network:
"""
Alias for connect.
Parameters
----------
ntwkA : :class:`Network`
network 'A'
k : int
starting port index on `ntwkA` ( port indices start from 0 )
ntwkB : :class:`Network`
network 'B'
l : int
starting port index on `ntwkB`
Returns
-------
ntwkC : :class:`Network`
new network of rank `(ntwkA.nports + ntwkB.nports - 2)`
"""
warnings.warn("connect_fast is deprecated. Use connect.", DeprecationWarning, stacklevel=2)
return connect(ntwkA, k, ntwkB, l)
[docs]def innerconnect(ntwkA: Network, k: int, l: int, num: int = 1) -> Network:
"""
Connect ports of a single n-port network.
this results in a (n-2)-port network. remember port indices start
from 0.
Note
----
A 2-port 'mismatch' network is inserted between the connected ports
if their impedances are not equal.
Parameters
----------
ntwkA : :class:`Network`
network 'A'
k,l : int
starting port indices on ntwkA ( port indices start from 0 )
num : int
number of consecutive ports to connect
Returns
-------
ntwkC : :class:`Network`
new network of rank (ntwkA.nports - 2*num)
See Also
--------
connect_s : actual S-parameter connection algorithm.
innerconnect_s : actual S-parameter connection algorithm.
Examples
--------
To connect ports '0' and port '1' on ntwkA
>>> ntwkA = rf.Network('ntwkA.s3p')
>>> ntwkC = rf.innerconnect(ntwkA, 0,1)
"""
if (k + num - 1 > ntwkA.nports - 1):
raise IndexError('Port `k` out of range')
if (l + num - 1 > ntwkA.nports - 1):
raise IndexError('Port `l` out of range')
# create output Network, from copy of input
ntwkC = ntwkA.copy()
s_def_original = ntwkC.s_def
# 'power' is not supported, convert to supported definition and back afterwards
if ntwkC.s_def == 'power':
ntwkC.renormalize(ntwkC.z0, 'pseudo')
if not (ntwkC.z0[:, k] == ntwkC.z0[:, l]).all():
# connect a impedance mismatch, which will takes into account the
# effect of differing port impedances
mismatch = impedance_mismatch(ntwkC.z0[:, k], ntwkC.z0[:, l], ntwkC.s_def)
ntwkC.s = connect_s(ntwkC.s, k, mismatch, 0)
# the connect_s() put the mismatch's output port at the end of
# ntwkC's ports. Fix the new port's impedance, then insert it
# at position k where it belongs.
ntwkC.z0[:, k:] = npy.hstack((ntwkC.z0[:, k + 1:], ntwkC.z0[:, [l]]))
ntwkC.renumber(from_ports=[ntwkC.nports - 1] + list(range(k, ntwkC.nports - 1)),
to_ports=list(range(k, ntwkC.nports)))
# call s-matrix connection function
ntwkC.s = innerconnect_s(ntwkC.s, k, l)
# update the characteristic impedance matrix
ntwkC.z0 = npy.delete(ntwkC.z0, list(range(k, k + 1)) + list(range(l, l + 1)), 1)
# recur if we're connecting more than one port
if num > 1:
ntwkC = innerconnect(ntwkC, k, l - 1, num - 1)
if ntwkC.s_def != s_def_original:
ntwkC.renormalize(ntwkC.z0, s_def_original)
return ntwkC
[docs]def cascade(ntwkA: Network, ntwkB: Network) -> Network:
"""
Cascade two 2, 2N-ports Networks together.
Connects ports N through 2N-1 on `ntwkA` to ports 0 through N of
`ntwkB`. This calls `connect()`, which is a more general function.
Use `Network.renumber` to change port order if needed.
Note
----
connection diagram::
A B
+---------+ +---------+
-|0 N |---|0 N |-
-|1 N+1|---|1 N+1|-
... ... ... ...
-|N-2 2N-2|---|N-2 2N-2|-
-|N-1 2N-1|---|N-1 2N-1|-
+---------+ +---------+
Parameters
----------
ntwkA : :class:`Network`
network `ntwkA`
ntwkB : :class:`Network`
network `ntwkB`
Returns
-------
C : :class:`Network`
the resultant network of ntwkA cascaded with ntwkB
See Also
--------
connect : connects two Networks together at arbitrary ports.
Network.renumber : changes the port order of a network
"""
if ntwkA.nports<2:
raise ValueError('nports must be >1')
N = int(ntwkA.nports/2 )
if ntwkB.nports == 1:
# we are terminating an N-port with a 1-port.
# which port on self to use is ambiguous. choose N
return connect(ntwkA, N, ntwkB, 0)
elif ntwkA.nports % 2 == 0 and ntwkA.nports == ntwkB.nports:
# we have two 2N-port balanced networks
return connect(ntwkA, N, ntwkB, 0, num=N)
elif ntwkA.nports % 2 == 0 and ntwkA.nports == 2 * ntwkB.nports:
# we have a 2N-port balanced network terminated by an N-port network
return connect(ntwkA, N, ntwkB, 0, num=N)
else:
raise ValueError('I dont know what to do, check port shapes of Networks')
[docs]def cascade_list(l: Sequence[Network]) -> Network:
"""
Cascade a list of 2N-port networks.
all networks must have same frequency
Parameters
----------
l : list-like
(ordered) list of networks
Returns
-------
out : 2-port Network
the results of cascading all networks in the list `l`
"""
return reduce(cascade, l)
[docs]def de_embed(ntwkA: Network, ntwkB: Network) -> Network:
"""
De-embed `ntwkA` from `ntwkB`.
This calls `ntwkA.inv ** ntwkB`. The syntax of cascading an inverse
is more explicit, it is recommended that it be used instead of this
function.
Parameters
----------
ntwkA : :class:`Network`
network `ntwkA`
ntwkB : :class:`Network`
network `ntwkB`
Returns
-------
C : Network
the resultant network of ntwkB de-embedded from ntwkA
See Also
--------
connect : connects two Networks together at arbitrary ports.
"""
return ntwkA.inv ** ntwkB
[docs]def stitch(ntwkA: Network, ntwkB: Network, **kwargs) -> Network:
r"""
Stitch ntwkA and ntwkB together.
Concatenates two networks' data. Given two networks that cover
different frequency bands this can be used to combine their data
into a single network.
Parameters
----------
ntwkA, ntwkB : :class:`Network` objects
Networks to stitch together
\*\*kwargs : keyword args
passed to :class:`Network` constructor, for output network
Returns
-------
ntwkC : :class:`Network`
result of stitching the networks `ntwkA` and `ntwkB` together
Examples
--------
>>> from skrf.data import wr2p2_line, wr1p5_line
>>> rf.stitch(wr2p2_line, wr1p5_line)
2-Port Network: 'wr2p2,line', 330-750 GHz, 402 pts, z0=[ 50.+0.j 50.+0.j]
"""
A, B = ntwkA, ntwkB
C = Network(
frequency=Frequency.from_f(npy.r_[A.f[:], B.f[:]], unit='hz'),
s=npy.r_[A.s, B.s],
z0=npy.r_[A.z0, B.z0],
name=A.name,
**kwargs
)
C.frequency.unit = A.frequency.unit
return C
[docs]def overlap(ntwkA: Network, ntwkB: Network) -> Tuple[Network, Network]:
"""
Return the overlapping parts of two Networks, interpolating if needed.
If frequency vectors for each ntwk don't perfectly overlap, then
ntwkB is interpolated so that the resultant networks have identical
frequencies.
Parameters
----------
ntwkA : :class:`Network`
a ntwk which overlaps `ntwkB`. (the `dominant` network)
ntwkB : :class:`Network`
a ntwk which overlaps `ntwkA`.
Returns
-------
ntwkA_new : :class:`Network`
part of `ntwkA` that overlapped `ntwkB`
ntwkB_new : :class:`Network`
part of `ntwkB` that overlapped `ntwkA`, possibly interpolated
See Also
--------
:func:`skrf.frequency.overlap_freq`
:func:`skrf.network.overlap_multi`
"""
new_freq = ntwkA.frequency.overlap(ntwkB.frequency)
return ntwkA.interpolate(new_freq), ntwkB.interpolate(new_freq)
def overlap_multi(ntwk_list: Sequence[Network]):
"""
Return the overlapping parts of multiple Networks, interpolating if needed.
If frequency vectors for each ntwk don't perfectly overlap, then
all networks after the first are interpolated so that the resultant networks
have identical frequencies.
Parameters
----------
ntwk_list : list of skrf.Networks
a list of networks with some overlap
Returns
-------
overlap_list : list of skrf.Networks
a list of networks that mutually overlap
See Also
--------
:func:`skrf.frequency.overlap_freq`
:func:`skrf.network.overlap`
"""
new_freq = ntwk_list[0].frequency
for ntwk in ntwk_list[1:]:
new_freq = new_freq.overlap(ntwk.frequency)
return [ntwk.interpolate(new_freq) for ntwk in ntwk_list]
[docs]def concat_ports(ntwk_list: Sequence[Network], port_order: str = 'second',
*args, **kw) -> Network:
"""
Concatenate networks along the port axis.
Note
----
The `port_order` ='first', means front-to-back, while
`port_order`='second' means left-to-right. So, for example, when
concatenating two 2-networks, `A` and `B`, the ports are ordered as follows:
'first'
a0 o---o a1 -> 0 o---o 1
b0 o---o b1 -> 2 o---o 3
'second'
a0 o---o a1 -> 0 o---o 2
b0 o---o b1 -> 1 o---o 3
use `Network.renumber` to change port ordering.
Parameters
----------
ntwk_list : list of skrf.Networks
ntwks to concatenate
port_order : ['first', 'second']
Examples
--------
>>>concat([ntwkA,ntwkB])
>>>concat([ntwkA,ntwkB,ntwkC,ntwkD], port_order='second')
To put for lines in parallel
>>> from skrf import air
>>> l1 = air.line(100, z0=[0,1])
>>> l2 = air.line(300, z0=[2,3])
>>> l3 = air.line(400, z0=[4,5])
>>> l4 = air.line(400, z0=[6,7])
>>> concat_ports([l1,l2,l3,l4], port_order='second')
See Also
--------
stitch : concatenate two networks along the frequency axis
renumber : renumber ports
"""
# if ntwk list is longer than 2, recursively call myself
# until we are done
if len(ntwk_list) > 2:
def f(x, y):
return concat_ports([x, y], port_order='first')
out = reduce(f, ntwk_list)
# if we want to renumber ports, we have to wait
# until after the recursive calls
if port_order == 'second':
N = out.nports
old_order = list(range(N))
new_order = list(range(0, N, 2)) + list(range(1, N, 2))
out.renumber(new_order, old_order)
return out
ntwkA, ntwkB = ntwk_list
if ntwkA.frequency != ntwkB.frequency:
raise ValueError('ntwks don\'t have matching frequencies')
A = ntwkA.s
B = ntwkB.s
nf = A.shape[0] # num frequency points
nA = A.shape[1] # num ports on A
nB = B.shape[1] # num ports on B
nC = nA + nB # num ports on C
# create composite matrix, appending each sub-matrix diagonally
C = npy.zeros((nf, nC, nC), dtype='complex')
C[:, :nA, :nA] = A.copy()
C[:, nA:, nA:] = B.copy()
ntwkC = ntwkA.copy()
ntwkC.s = C
ntwkC.z0 = npy.hstack([ntwkA.z0, ntwkB.z0])
if port_order == 'second':
old_order = list(range(nC))
new_order = list(range(0, nC, 2)) + list(range(1, nC, 2))
ntwkC.renumber(old_order, new_order)
return ntwkC
[docs]def average(list_of_networks: Sequence[Network], polar: bool = False) -> Network:
"""
Calculate the average network from a list of Networks.
This is complex average of the s-parameters for a list of Networks.
Parameters
----------
list_of_networks : list of :class:`Network` objects
the list of networks to average
polar : boolean, optional
Average the mag/phase components individually. Default is False.
Returns
-------
ntwk : :class:`Network`
the resultant averaged Network
Note
----
This same function can be accomplished with properties of a
:class:`~skrf.networkset.NetworkSet` class.
Examples
--------
>>> ntwk_list = [rf.Network('myntwk.s1p'), rf.Network('myntwk2.s1p')]
>>> mean_ntwk = rf.average(ntwk_list)
"""
out_ntwk = list_of_networks[0].copy()
if polar:
# average the mag/phase components individually
raise NotImplementedError
else:
# average the re/im components individually
for a_ntwk in list_of_networks[1:]:
out_ntwk += a_ntwk
out_ntwk.s = out_ntwk.s / (len(list_of_networks))
return out_ntwk
def stdev(list_of_networks: Sequence[Network], attr: str = 's') -> npy.ndarray:
"""
Calculate the standard deviation of a network attribute from a list of Networks.
This is the standard deviation for complex values of the s-parameters and other related attributes
for a list of Networks.
Parameters
----------
list_of_networks : list of :class:`Network` objects
the list of networks to average
attr : str, optional
name of attribute to average
Returns
-------
stdev_array : ndarray
An array of standard deviation values computed after combining the s-parameter values of the given networks.
Examples
--------
>>> ntwk_list = [rf.Network('myntwk.s1p'), rf.Network('myntwk2.s1p')]
>>> ntwk_stdev = rf.stdev(ntwk_list)
"""
return npy.array([getattr(network, attr) for network in list_of_networks]).std(axis=0)
[docs]def one_port_2_two_port(ntwk: Network) -> Network:
"""
Calculate the 2-port network given a symmetric, reciprocal and lossless 1-port network.
Parameters
----------
ntwk : :class:`Network`
a symmetric, reciprocal and lossless one-port network.
Returns
-------
ntwk : :class:`Network`
the resultant two-port Network
"""
result = ntwk.copy()
result.s = npy.zeros((result.frequency.npoints, 2, 2), dtype=complex)
s11 = ntwk.s[:, 0, 0]
result.s[:, 0, 0] = s11
result.s[:, 1, 1] = s11
## HACK: TODO: verify this mathematically
result.s[:, 0, 1] = npy.sqrt(1 - npy.abs(s11) ** 2) * \
npy.exp(1j * (
npy.angle(s11) + npy.pi / 2. * (npy.angle(s11) < 0) - npy.pi / 2 * (npy.angle(s11) > 0)))
result.s[:, 1, 0] = result.s[:, 0, 1]
result.z0 = npy.hstack([ntwk.z0,ntwk.z0])
return result
[docs]def chopinhalf(ntwk: Network, *args, **kwargs) -> Network:
r"""
Chop a sandwich of identical, reciprocal 2-ports in half.
Given two identical, reciprocal 2-ports measured in series,
this returns one.
Note
----
In other words, given
.. math::
B = A\cdot A
Return A, where A port2 is connected to A port1. The result may
be found through signal flow graph analysis and is,
.. math::
a_{11} = \frac{b_{11}}{1+b_{12}}
a_{22} = \frac{b_{22}}{1+b_{12}}
a_{12}^2 = b_{21}(1-\frac{b_{11}b_{22}}{(1+b_{12})^2}
Parameters
----------
ntwk : :class:`Network`
a 2-port that is equal to two identical two-ports in cascade
"""
if ntwk.nports != 2:
raise ValueError('Only valid on 2ports')
b11, b22, b12 = ntwk.s11, ntwk.s22, ntwk.s12
kwargs['name'] = kwargs.get('name', ntwk.name)
a11 = b11 / (1 + b12)
a22 = b22 / (1 + b12)
a21 = b12 * (1 - b11 * b22 / (1 + b12) ** 2) # this is a21^2 here
a21.s = mf.sqrt_phase_unwrap(a21.s)
A = n_oneports_2_nport([a11, a21, a21, a22], *args, **kwargs)
return A
def evenodd2delta(n: Network, z0: NumberLike = 50, renormalize: bool = True,
doublehalf: bool = True) -> Network:
"""
Convert ntwk's s-matrix from even/odd mode into a delta (normal) s-matrix.
This assumes even/odd ports are ordered [1e,1o,2e,2o].
This is useful for handling coupler sims. Only 4-ports supported for now.
Parameters
----------
n : skrf.Network
Network with an even/odd mode s-matrix
z0: number, list of numbers
the characteristic impedance to set output networks port impedance
to , and used to renormalize s-matrix before conversio if
`renormalize`=True.
renormalize : Bool
if impedances are in even/odd then they must be renormalized to
get correct transformation
doublehalf: Bool
convert even/odd impedances to double/half their values. this is
required if data comes from hfss waveports .
Returns
-------
out: skrf.Network
same network as `n` but with s-matrix in normal delta basis
See Also
--------
Network.se2gmm, Network.gmm2se
"""
# move even and odd ports, so we have even and odd
# s-matrices contiguous
n_eo = n.copy()
n_eo.renumber([0,1,2,3],[0,2,1,3])
if doublehalf:
n_eo.z0 = n_eo.z0*[2,2,.5,.5]
# if the n_eo s-matrix is given with e/o z0's we need
# to renormalize into 50
if renormalize:
n_eo.renormalize(z0)
even = n_eo.s[:,0:2,0:2]
odd = n_eo.s[:,2:4,2:4]
# compute sub-networks for symmetric 4port
s_a = .5*(even+odd)
s_b = .5*(even-odd)
# create output network
n_delta = n_eo.copy()
n_delta.s[:,0:2,0:2] = n_delta.s[:,2:4,2:4] = s_a
n_delta.s[:,2:4,0:2] = n_delta.s[:,0:2,2:4] = s_b
n_delta.z0=z0
return n_delta
[docs]def subnetwork(ntwk: Network, ports: int, offby:int = 1) -> Network:
"""
Return a subnetwork of a given Network from a list of port numbers.
A subnetwork is Network which S-parameters corresponds to selected ports,
with all non-selected ports considered matched.
The resulting subNetwork is given a new Network.name property
from the initial name and adding the kept ports indices
(ex: 'device' -> 'device13'). Such name should make easier the use
of functions such as n_twoports_2_nport.
Parameters
----------
ntwk : :class:`Network` object
Network to split into a subnetwork
ports : list of int
List of ports to keep in the resultant Network.
Indices are the Python indices (starts at 0)
offby : int
starting value for s-parameters indexes in the sub-Network name parameter.
A value of `1`, assumes that a s21 = ntwk.s[:,1,0]. Default is 1.
Returns
-------
subntwk : :class:`Network` object
Resulting subnetwork from the given ports
See also
--------
Network.subnetwork, n_twoports_2_nport
Examples
--------
>>> tee = rf.data.tee # 3 port Network
>>> tee12 = rf.subnetwork(tee, [0, 1]) # 2 port Network from ports 1 & 2, port 3 matched
>>> tee23 = rf.subnetwork(tee, [1, 2]) # 2 port Network from ports 2 & 3, port 1 matched
>>> tee13 = rf.subnetwork(tee, [0, 2]) # 2 port Network from ports 1 & 3, port 2 matched
"""
# forging subnetwork name
subntwk_name = (ntwk.name or 'p') + ''.join([str(index+offby) for index in ports])
# create a dummy Network with same frequency and z0 from the original
subntwk = Network(frequency=ntwk.frequency, z0=ntwk.z0[:,ports], name=subntwk_name)
# keep requested rows and columns of the s-matrix. ports can be not contiguous
subntwk.s = ntwk.s[npy.ix_(npy.arange(ntwk.s.shape[0]), ports, ports)]
# keep port_names
if ntwk.port_names:
subntwk.port_names = [ntwk.port_names[idx] for idx in ports]
return subntwk
## Building composit networks from sub-networks
[docs]def n_oneports_2_nport(ntwk_list: Sequence[Network], *args, **kwargs) -> Network:
r"""
Build an N-port Network from list of N one-ports.
Parameters
----------
ntwk_list : list of :class:`Network` objects
must follow left-right, top-bottom order, ie, s11,s12,s21,s22
\*args, \*\*kwargs :
passed to :func:`Network.__init__` for the N-port
Returns
-------
nport : n-port :class:`Network`
result
"""
nports = int(npy.sqrt(len(ntwk_list)))
s_out = npy.concatenate(
[npy.concatenate(
[ntwk_list[(k + (l * nports))].s for k in range(nports)], 2) \
for l in range(nports)], 1)
z0 = npy.concatenate(
[ntwk_list[k].z0 for k in range(0, nports ** 2, nports + 1)], 1)
frequency = ntwk_list[0].frequency
return Network(s=s_out, z0=z0, frequency=frequency, *args, **kwargs)
[docs]def n_twoports_2_nport(ntwk_list: Sequence[Network], nports: int,
offby:int = 1, **kwargs) -> Network:
r"""
Build an N-port Network from list of two-ports.
This method was made to reconstruct an n-port network from 2-port
subnetworks as measured by a 2-port VNA. So, for example, given a
3-port DUT, you might measure the set p12.s2p, p23.s2p, p13.s2p.
From these measurements, you can construct p.s3p.
By default all entries of result.s are filled with 0's, in case you
dont fully specify the entire s-matrix of the resultant ntwk.
Parameters
----------
ntwk_list : list of :class:`Network` objects
the names must contain the port index, ie 'p12' or 'p43',
ie. define the Network.name property of the :class:`Network` object.
offby : int
starting value for s-parameters indices. ie a value of `1`,
assumes that a s21 = ntwk.s[:,1,0]
\*args, \*\*kwargs :
passed to :func:`Network.__init__` for the N-port
Returns
-------
nport : n-port :class:`Network`
result
See Also
--------
concat_ports : concatenate ntwks along their ports
"""
frequency = ntwk_list[0].frequency
nport = Network(frequency=frequency,
s=npy.zeros(shape=(frequency.npoints, nports, nports)),
**kwargs)
for subntwk in ntwk_list:
for m, n in nport.port_tuples:
if m != n and m > n:
if '%i%i' % (m + offby, n + offby) in subntwk.name:
pass
elif '%i%i' % (n + offby, m + offby) in subntwk.name:
subntwk = subntwk.flipped()
else:
continue
for mn, jk in zip(product((m, n), repeat=2), product((0, 1), repeat=2)):
m, n, j, k = mn[0], mn[1], jk[0], jk[1]
nport.s[:, m, n] = subntwk.s[:, j, k]
nport.z0[:, m] = subntwk.z0[:, j]
return nport
[docs]def four_oneports_2_twoport(s11: Network, s12: Network, s21: Network, s22: Network, *args, **kwargs) -> Network:
r"""
Build a 2-port Network from list of four 1-ports.
Parameters
----------
s11 : one-port :class:`Network`
s11
s12 : one-port :class:`Network`
s12
s21 : one-port :class:`Network`
s21
s22 : one-port :class:`Network`
s22
\*args, \*\*kwargs :
passed to :func:`Network.__init__` for the twoport
Returns
-------
twoport : two-port :class:`Network`
result
See Also
--------
n_oneports_2_nport
three_twoports_2_threeport
"""
return n_oneports_2_nport([s11, s12, s21, s22], *args, **kwargs)
[docs]def three_twoports_2_threeport(ntwk_triplet: Sequence[Network], auto_order:bool = True, *args,
**kwargs) -> Network:
r"""
Create 3-port from three 2-port Networks.
This function provides a convenient way to build a 3-port Network
from a set of 2-port measurements. Which may occur when measuring
a three port device on a 2-port VNA.
Note
----
if `auto_order` is False, ntwk_triplet must be of port orderings:
[p12, p13, p23]
else if `auto_order`is True, then the 3 Networks in ntwk_triplet must
contain port identification in their names.
For example, their names may be like `me12`, `me13`, `me23`
Parameters
----------
ntwk_triplet : list of 2-port Network objects
list of three 2-ports. see notes about order.
auto_order : bool
if True attempt to inspect port orderings from Network names.
Names must be like 'p12', 'p23', etc
contains : str
only files containing this string will be loaded.
\*args,\*\*kwargs :
passed to :func:`Network.__init__` for resultant network
Returns
-------
threeport : 3-port Network
See Also
--------
n_oneports_2_nport
Examples
--------
>>> rf.three_twoports_2_threeport(rf.read_all('.').values())
"""
raise DeprecationWarning('Use n_twoports_2_nport instead')
if auto_order:
p12, p13, p23 = None, None, None
s11, s12, s13, s21, s22, s23, s31, s32, s33 = None, None, None, None, None, None, None, None, None
for k in ntwk_triplet:
if '12' in k.name:
p12 = k
elif '13' in k.name:
p13 = k
elif '23' in k.name:
p23 = k
elif '21' in k.name:
p12 = k.flipped()
elif '31' in k.name:
p31 = k.flipped()
elif '32' in k.name:
p23 = k.flipped()
else:
p12, p13, p23 = ntwk_triplet
p21 = p12.flipped()
p31 = p13.flipped()
p32 = p23.flipped()
if p12 is not None:
s11 = p12.s11
s12 = p12.s12
s21 = p12.s21
s22 = p12.s22
if p13 is not None:
s11 = p13.s11
s13 = p13.s12
s31 = p13.s21
s33 = p13.s22
if p23 is not None:
s22 = p23.s11
s23 = p23.s12
s32 = p23.s21
s33 = p23.s22
ntwk_list = [s11, s12, s13, s21, s22, s23, s31, s32, s33]
for k in range(len(ntwk_list)):
if ntwk_list[k] is None:
frequency = ntwk_triplet[0].frequency
s = npy.zeros((len(ntwk_triplet[0]), 1, 1))
ntwk_list[k] = Network(s=s, frequency=frequency)
threeport = n_oneports_2_nport(ntwk_list, *args, **kwargs)
return threeport
## Functions operating on s-parameter matrices
[docs]def connect_s(A: npy.ndarray, k: int, B: npy.ndarray, l: int) -> npy.ndarray:
"""
Connect two n-port networks' s-matrices together.
Specifically, connect port `k` on network `A` to port `l` on network
`B`. The resultant network has nports = (A.rank + B.rank-2). This
function operates on, and returns s-matrices. The function
:func:`connect` operates on :class:`Network` types.
Parameters
----------
A : :class:`numpy.ndarray`
S-parameter matrix of `A`, shape is fxnxn
k : int
port index on `A` (port indices start from 0)
B : :class:`numpy.ndarray`
S-parameter matrix of `B`, shape is fxnxn
l : int
port index on `B`
Returns
-------
C : :class:`numpy.ndarray`
new S-parameter matrix
Note
----
Internally, this function creates a larger composite network
and calls the :func:`innerconnect_s` function. see that function for more
details about the implementation
See Also
--------
connect : operates on :class:`Network` types
innerconnect_s : function which implements the connection algorithm
"""
if k > A.shape[-1] - 1 or l > B.shape[-1] - 1:
raise (ValueError('port indices are out of range'))
nf = A.shape[0] # num frequency points
nA = A.shape[1] # num ports on A
nB = B.shape[1] # num ports on B
nC = nA + nB # num ports on C
# create composite matrix, appending each sub-matrix diagonally
C = npy.zeros((nf, nC, nC), dtype='complex')
C[:, :nA, :nA] = A.copy()
C[:, nA:, nA:] = B.copy()
# call innerconnect_s() on composit matrix C
return innerconnect_s(C, k, nA + l)
[docs]def innerconnect_s(A: npy.ndarray, k: int, l: int) -> npy.ndarray:
"""
Connect two ports of a single n-port network's s-matrix.
Specifically, connect port `k` to port `l` on `A`. This results in
a (n-2)-port network. This function operates on, and returns
s-matrices. The function :func:`innerconnect` operates on
:class:`Network` types.
Note
----
The algorithm used to calculate the resultant network is called a
'sub-network growth', can be found in [#]_. The original paper
describing the algorithm is given in [#]_.
Parameters
----------
A : :class:`numpy.ndarray`
S-parameter matrix of `A`, shape is fxnxn
k : int
port index on `A` (port indices start from 0)
l : int
port index on `A`
Returns
-------
C : :class:`numpy.ndarray`
new S-parameter matrix
References
----------
.. [#] Compton, R.C.; , "Perspectives in microwave circuit analysis," Circuits and Systems, 1989.,
Proceedings of the 32nd Midwest Symposium on , vol., no., pp.716-718 vol.2, 14-16 Aug 1989.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=101955&isnumber=3167
.. [#] Filipsson, Gunnar; , "A New General Computer Algorithm for S-Matrix Calculation of Interconnected Multiports,"
Microwave Conference, 1981. 11th European , vol., no., pp.700-704, 7-11 Sept. 1981.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4131699&isnumber=4131585
"""
if k > A.shape[-1] - 1 or l > A.shape[-1] - 1:
raise (ValueError('port indices are out of range'))
nA = A.shape[1] # num of ports on input s-matrix
# create an empty s-matrix, to store the result
C = npy.zeros(shape=A.shape, dtype='complex')
# loop through ports and calculates resultant s-parameters
for i in range(nA):
for j in range(nA):
C[:, i, j] = \
A[:, i, j] + \
(A[:, k, j] * A[:, i, l] * (1 - A[:, l, k]) + \
A[:, l, j] * A[:, i, k] * (1 - A[:, k, l]) + \
A[:, k, j] * A[:, l, l] * A[:, i, k] + \
A[:, l, j] * A[:, k, k] * A[:, i, l]) / \
((1 - A[:, k, l]) * (1 - A[:, l, k]) - A[:, k, k] * A[:, l, l])
# remove ports that were `connected`
C = npy.delete(C, (k, l), 1)
C = npy.delete(C, (k, l), 2)
return C
## network parameter conversion
[docs]def s2z(s: npy.ndarray, z0: NumberLike = 50, s_def: str = S_DEF_DEFAULT) -> npy.ndarray:
r"""
Convert scattering parameters [#]_ to impedance parameters [#]_.
For power-waves, Eq.(19) from [#Kurokawa]_:
.. math::
Z = F^{-1} (1 - S)^{-1} (S G + G^*) F
where :math:`G = diag([Z_0])` and :math:`F = diag([1/2\sqrt{|Re(Z_0)|}])`
For pseudo-waves, Eq.(74) from [#Marks]_:
.. math::
Z = (1 - U^{-1} S U)^{-1} (1 + U^{-1} S U) G
where :math:`U = \sqrt{Re(Z_0)}/|Z_0|`
Parameters
----------
s : complex array-like
scattering parameters
z0 : complex array-like or number
port impedances.
s_def : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition : 'power' for power-waves definition [#Kurokawa]_,
'pseudo' for pseudo-waves definition [#Marks]_.
'traveling' corresponds to the initial implementation.
Default is 'power'.
Returns
-------
z : complex array-like
impedance parameters
References
----------
.. [#] http://en.wikipedia.org/wiki/S-parameters
.. [#] http://en.wikipedia.org/wiki/impedance_parameters
.. [#Kurokawa] Kurokawa, Kaneyuki "Power waves and the scattering matrix",
IEEE Transactions on Microwave Theory and Techniques, vol.13, iss.2, pp. 194–202, March 1965.
.. [#Marks] Marks, R. B. and Williams, D. F. "A general waveguide circuit theory",
Journal of Research of National Institute of Standard and Technology, vol.97, iss.5, pp. 533–562, 1992.
"""
nfreqs, nports, nports = s.shape
z0 = fix_z0_shape(z0, nfreqs, nports)
# Add a small real part in case of pure imaginary char impedance
# to prevent numerical errors for both pseudo and power waves definitions
z0 = z0.astype(dtype=complex)
z0[z0.real == 0] += ZERO
s = npy.array(s, dtype=complex)
# The following is a vectorized version of a for loop for all frequencies.
# # Creating Identity matrices of shape (nports,nports) for each nfreqs
Id = npy.zeros_like(s) # (nfreqs, nports, nports)
npy.einsum('ijj->ij', Id)[...] = 1.0
if s_def == 'power':
# Power-waves. Eq.(19) from [Kurokawa et al.]
# Creating diagonal matrices of shape (nports,nports) for each nfreqs
F, G = npy.zeros_like(s), npy.zeros_like(s)
npy.einsum('ijj->ij', F)[...] = 1.0/(2*npy.sqrt(z0.real))
npy.einsum('ijj->ij', G)[...] = z0
z = npy.linalg.solve(mf.nudge_eig((Id - s) @ F), (s @ G + npy.conjugate(G)) @ F)
elif s_def == 'pseudo':
# Pseudo-waves. Eq.(74) from [Marks et al.]
# Creating diagonal matrices of shape (nports,nports) for each nfreqs
ZR, U = npy.zeros_like(s), npy.zeros_like(s)
npy.einsum('ijj->ij', U)[...] = npy.sqrt(z0.real)/npy.abs(z0)
npy.einsum('ijj->ij', ZR)[...] = z0
USU = npy.linalg.solve(U, s @ U)
z = npy.linalg.solve(mf.nudge_eig(Id - USU), (Id + USU) @ ZR)
elif s_def == 'traveling':
# Traveling-waves definition. Cf.Wikipedia "Impedance parameters" page.
# Creating diagonal matrices of shape (nports, nports) for each nfreqs
sqrtz0 = npy.zeros_like(s)
npy.einsum('ijj->ij', sqrtz0)[...] = npy.sqrt(z0)
z = sqrtz0 @ npy.linalg.solve(mf.nudge_eig(Id - s), (Id + s) @ sqrtz0)
else:
raise ValueError(f'Unknown s_def: {s_def}')
return z
[docs]def s2y(s: npy.ndarray, z0:NumberLike = 50, s_def: str = S_DEF_DEFAULT) -> npy.ndarray:
"""
Convert scattering parameters [#]_ to admittance parameters [#]_.
Equations are the inverse of :func:`s2z`.
Parameters
----------
s : complex array-like
scattering parameters
z0 : complex array-like or number
port impedances
s_def : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition : 'power' for power-waves definition [#]_,
'pseudo' for pseudo-waves definition [#]_.
'traveling' corresponds to the initial implementation.
Default is 'power'.
Returns
-------
y : complex array-like
admittance parameters
See Also
--------
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2z
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/S-parameters
.. [#] http://en.wikipedia.org/wiki/Admittance_parameters
.. [#] Kurokawa, Kaneyuki "Power waves and the scattering matrix",
IEEE Transactions on Microwave Theory and Techniques, vol.13, iss.2, pp. 194–202, March 1965.
.. [#] Marks, R. B. and Williams, D. F. "A general waveguide circuit theory",
Journal of Research of National Institute of Standard and Technology, vol.97, iss.5, pp. 533–562, 1992.
"""
nfreqs, nports, nports = s.shape
z0 = fix_z0_shape(z0, nfreqs, nports)
# Add a small real part in case of pure imaginary char impedance
# to prevent numerical errors for both pseudo and power waves definitions
z0 = z0.astype(dtype=complex)
z0[z0.real == 0] += ZERO
s = npy.array(s, dtype=complex)
# The following is a vectorized version of a for loop for all frequencies.
# Creating Identity matrices of shape (nports,nports) for each nfreqs
Id = npy.zeros_like(s) # (nfreqs, nports, nports)
npy.einsum('ijj->ij', Id)[...] = 1.0
if s_def == 'power':
# Power-waves. Inverse of Eq.(19) from [Kurokawa et al.]
# Creating diagonal matrices of shape (nports,nports) for each nfreqs
F, G = npy.zeros_like(s), npy.zeros_like(s)
npy.einsum('ijj->ij', F)[...] = 1.0/(2*npy.sqrt(z0.real))
npy.einsum('ijj->ij', G)[...] = z0
y = npy.linalg.solve(mf.nudge_eig((s @ G + npy.conjugate(G)) @ F), (Id - s) @ F)
elif s_def == 'pseudo':
# pseudo-waves. Inverse of Eq.(74) from [Marks et al.]
YR, U = npy.zeros_like(s), npy.zeros_like(s)
npy.einsum('ijj->ij', U)[...] = npy.sqrt(z0.real)/npy.abs(z0)
npy.einsum('ijj->ij', YR)[...] = 1/z0
USU = npy.linalg.solve(U, s @ U)
y = YR @ npy.linalg.solve(mf.nudge_eig(Id + USU), Id - USU)
elif s_def == 'traveling':
# Traveling-waves definition. Cf.Wikipedia "Impedance parameters" page.
# Creating diagonal matrices of shape (nports, nports) for each nfreqs
sqrty0 = npy.zeros_like(s) # (nfreqs, nports, nports)
npy.einsum('ijj->ij', sqrty0)[...] = npy.sqrt(1.0/z0)
y = sqrty0 @ (Id - s) @ npy.linalg.solve(mf.nudge_eig(Id + s), sqrty0)
else:
raise ValueError(f'Unknown s_def: {s_def}')
return y
[docs]def s2t(s: npy.ndarray) -> npy.ndarray:
"""
Convert scattering parameters [#]_ to scattering transfer parameters [#]_.
transfer parameters are also referred to as
'wave cascading matrix' [#]_, this function only operates on 2N-ports
networks with same number of input and output ports, also known as
'balanced networks'.
Parameters
----------
s : :class:`numpy.ndarray` (shape fx2nx2n)
scattering parameter matrix
Returns
-------
t : npy.ndarray
scattering transfer parameters (aka wave cascading matrix)
See Also
--------
inv : calculates inverse s-parameters
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2z
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/S-parameters
.. [#] http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters
.. [#] Janusz A. Dobrowolski, "Scattering Parameter in RF and Microwave Circuit Analysis and Design",
Artech House, 2016, pp. 65-68
"""
z, y, x = s.shape
# test here for even number of ports.
# s-parameter networks are square matrix, so x and y are equal.
if(x % 2 != 0):
raise IndexError('Network does not have an even number of ports')
t = npy.zeros((z, y, x), dtype=complex)
yh = int(y/2)
xh = int(x/2)
# S_II,I^-1
sinv = npy.linalg.inv(s[:, yh:y, 0:xh])
# np.linalg.inv test for singularity (matrix not invertible)
for k in range(len(s)):
w = sinv[k].dot(s[k, yh:y, xh:x])
# T_I,I = S_I,II - S_I,I . S_II,I^-1 . S_II,II
t[k, 0:yh, 0:xh] = s[k, 0:yh, xh:x] - s[k, 0:yh, 0:xh].dot(w)
# T_I,II = S_I,I . S_II,I^-1
t[k, 0:yh, xh:x] = s[k, 0:yh, 0:xh].dot(sinv[k])
# T_II,I = -S_II,I^-1 . S_II,II
t[k, yh:y, 0:xh] = -w
# T_II,II = S_II,I^-1
t[k, yh:y, xh:x] = sinv[k]
return t
def s2s(s: NumberLike, z0: NumberLike, s_def_new: str, s_def_old: str):
r"""
Convert scattering parameters to scattering parameters with different
definition.
Calculates port voltages and currents using the old definition and
then calculates the incoming and reflected waves from the voltages
using the new S-parameter definition.
Only has effect if z0 has at least one complex impedance port.
Parameters
----------
s : complex array-like
impedance parameters
z0 : complex array-like or number
port impedances
s_def_new : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition of the output network.
'power' for power-waves definition [#Kurokawa]_,
'pseudo' for pseudo-waves definition [#Marks]_.
'traveling' corresponds to the initial implementation.
s_def_old : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition of the input network.
'power' for power-waves definition [#Kurokawa]_,
'pseudo' for pseudo-waves definition [#Marks]_.
'traveling' corresponds to the initial implementation.
Returns
-------
s : complex array-like
scattering parameters
References
----------
.. [#Kurokawa] Kurokawa, Kaneyuki "Power waves and the scattering matrix",
IEEE Transactions on Microwave Theory and Techniques, vol.13, iss.2, pp. 194–202, March 1965.
.. [#Marks] Marks, R. B. and Williams, D. F. "A general waveguide circuit theory",
Journal of Research of National Institute of Standard and Technology, vol.97, iss.5, pp. 533–562, 1992.
"""
if s_def_new == s_def_old:
# Nothing to do.
return s
nfreqs, nports, nports = s.shape
z0 = fix_z0_shape(z0, nfreqs, nports)
if npy.isreal(z0).all():
# Nothing to do because all port impedances are real so the used
# definition (power or travelling) does not make a difference.
return s
# Calculate port voltages and currents using the old s_def.
F, G = npy.zeros_like(s), npy.zeros_like(s)
if s_def_old == 'power':
npy.einsum('ijj->ij', F)[...] = 1.0/(npy.sqrt(z0.real))
npy.einsum('ijj->ij', G)[...] = z0
Id = npy.eye(s.shape[1], dtype=complex)
v = F @ (G.conjugate() + G @ s)
i = F @ (Id - s)
elif s_def_old == 'pseudo':
npy.einsum('ijj->ij', F)[...] = abs(z0)/npy.sqrt(z0.real)
npy.einsum('ijj->ij', G)[...] = abs(z0)/(z0*npy.sqrt(z0.real))
Id = npy.eye(s.shape[1], dtype=complex)
v = F @ (Id + s)
i = G @ (Id - s)
elif s_def_old == 'traveling':
npy.einsum('ijj->ij', F)[...] = npy.sqrt(z0)
npy.einsum('ijj->ij', G)[...] = 1/(npy.sqrt(z0))
Id = npy.eye(s.shape[1], dtype=complex)
v = F @ (Id + s)
i = G @ (Id - s)
else:
raise ValueError(f'Unknown s_def: {s_def_old}')
# Calculate a and b waves from the voltages and currents.
F, G = npy.zeros_like(s), npy.zeros_like(s)
if s_def_new == 'power':
npy.einsum('ijj->ij', F)[...] = 1/(2*npy.sqrt(z0.real))
npy.einsum('ijj->ij', G)[...] = z0
a = F @ (v + G @ i)
b = F @ (v - G.conjugate() @ i)
elif s_def_new == 'pseudo':
npy.einsum('ijj->ij', F)[...] = npy.sqrt(z0.real)/(2*abs(z0))
npy.einsum('ijj->ij', G)[...] = z0
a = F @ (v + G @ i)
b = F @ (v - G @ i)
elif s_def_new == 'traveling':
npy.einsum('ijj->ij', F)[...] = 1/(npy.sqrt(z0))
npy.einsum('ijj->ij', G)[...] = z0
a = F @ (v + G @ i)
b = F @ (v - G @ i)
else:
raise ValueError(f'Unknown s_def: {s_def_old}')
# New S-parameter matrix from a and b waves.
s_new = npy.zeros_like(s)
for n in range(nports):
for m in range(nports):
s_new[:, m, n] = b[:, m, n] / a[:, n, n]
return s_new
[docs]def z2s(z: NumberLike, z0:NumberLike = 50, s_def: str = S_DEF_DEFAULT) -> npy.ndarray:
r"""
Convert impedance parameters [#]_ to scattering parameters [#]_.
For power-waves, Eq.(18) from [#Kurokawa]_:
.. math::
S = F (Z – G^*) (Z + G)^{-1} F^{-1}
where :math:`G = diag([Z_0])` and :math:`F = diag([1/2\sqrt{|Re(Z_0)|}])`
For pseudo-waves, Eq.(73) from [#Marks]_:
.. math::
S = U (Z - G) (Z + G)^{-1} U^{-1}
where :math:`U = \sqrt{Re(Z_0)}/|Z_0|`
Parameters
----------
z : complex array-like
impedance parameters
z0 : complex array-like or number
port impedances
s_def : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition : 'power' for power-waves definition [#Kurokawa]_,
'pseudo' for pseudo-waves definition [#Marks]_.
'traveling' corresponds to the initial implementation.
Default is 'power'.
Returns
-------
s : complex array-like
scattering parameters
References
----------
.. [#] http://en.wikipedia.org/wiki/impedance_parameters
.. [#] http://en.wikipedia.org/wiki/S-parameters
.. [#Kurokawa] Kurokawa, Kaneyuki "Power waves and the scattering matrix",
IEEE Transactions on Microwave Theory and Techniques, vol.13, iss.2, pp. 194–202, March 1965.
.. [#Marks] Marks, R. B. and Williams, D. F. "A general waveguide circuit theory",
Journal of Research of National Institute of Standard and Technology, vol.97, iss.5, pp. 533–562, 1992.
"""
nfreqs, nports, nports = z.shape
z0 = fix_z0_shape(z0, nfreqs, nports)
# Add a small real part in case of pure imaginary char impedance
# to prevent numerical errors for both pseudo and power waves definitions
z0 = z0.astype(dtype=complex)
z0[z0.real == 0] += ZERO
z = npy.array(z, dtype=complex)
if s_def == 'power':
# Power-waves. Eq.(18) from [Kurokawa et al.3]
# Creating diagonal matrices of shape (nports,nports) for each nfreqs
F, G = npy.zeros_like(z), npy.zeros_like(z)
npy.einsum('ijj->ij', F)[...] = 1.0/(2*npy.sqrt(z0.real))
npy.einsum('ijj->ij', G)[...] = z0
s = mf.rsolve(F @ (z + G), F @ (z - npy.conjugate(G)))
elif s_def == 'pseudo':
# Pseudo-waves. Eq.(73) from [Marks et al.]
# Creating diagonal matrices of shape (nports,nports) for each nfreqs
ZR, U = npy.zeros_like(z), npy.zeros_like(z)
npy.einsum('ijj->ij', U)[...] = npy.sqrt(z0.real)/npy.abs(z0)
npy.einsum('ijj->ij', ZR)[...] = z0
s = mf.rsolve(U @ (z + ZR), U @ (z - ZR))
elif s_def == 'traveling':
# Traveling-waves definition. Cf.Wikipedia "Impedance parameters" page.
# Creating Identity matrices of shape (nports,nports) for each nfreqs
Id, sqrty0 = npy.zeros_like(z), npy.zeros_like(z) # (nfreqs, nports, nports)
npy.einsum('ijj->ij', Id)[...] = 1.0
npy.einsum('ijj->ij', sqrty0)[...] = npy.sqrt(1.0/z0)
s = mf.rsolve(sqrty0 @ z @ sqrty0 + Id, sqrty0 @ z @ sqrty0 - Id)
else:
raise ValueError(f'Unknown s_def: {s_def}')
return s
[docs]def z2y(z: npy.ndarray) -> npy.ndarray:
"""
Convert impedance parameters [#]_ to admittance parameters [#]_.
.. math::
y = z^{-1}
Parameters
----------
z : complex array-like
impedance parameters
Returns
-------
y : complex array-like
admittance parameters
See Also
--------
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2z
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/impedance_parameters
.. [#] http://en.wikipedia.org/wiki/Admittance_parameters
"""
return npy.linalg.inv(z)
[docs]def z2t(z: npy.ndarray) -> NoReturn:
"""
Not Implemented yet.
Convert impedance parameters [#]_ to scattering transfer parameters [#]_.
Parameters
----------
z : complex array-like or number
impedance parameters
Returns
-------
s : complex array-like or number
scattering parameters
See Also
--------
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2z
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/impedance_parameters
.. [#] http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters
"""
raise (NotImplementedError)
def a2s(a: npy.ndarray, z0: NumberLike = 50) -> npy.ndarray:
"""
Convert abcd parameters to s parameters.
Parameters
----------
a : complex array-like
abcd parameters
z0 : complex array-like or number
port impedances
Returns
-------
s : complex array-like
abcd parameters
"""
nfreqs, nports, nports = a.shape
if nports != 2:
raise IndexError('abcd parameters are defined for 2-ports networks only')
z0 = fix_z0_shape(z0, nfreqs, nports)
z01 = z0[:,0]
z02 = z0[:,1]
A = a[:,0,0]
B = a[:,0,1]
C = a[:,1,0]
D = a[:,1,1]
denom = A*z02 + B + C*z01*z02 + D*z01
s = npy.array([
[
(A*z02 + B - C*z01.conj()*z02 - D*z01.conj() ) / denom,
(2*npy.sqrt(z01.real * z02.real)) / denom,
],
[
(2*(A*D - B*C)*npy.sqrt(z01.real * z02.real)) / denom,
(-A*z02.conj() + B - C*z01*z02.conj() + D*z01) / denom,
],
]).transpose()
return s
#return z2s(a2z(a), z0)
def a2z(a: npy.ndarray) -> npy.ndarray:
"""
Convert abcd parameters to z parameters [#]_.
Parameters
----------
a : :class:`numpy.ndarray` (shape fx2x2)
abcd parameter matrix
Returns
-------
z : npy.ndarray
impedance parameters
See Also
--------
inv : calculates inverse s-parameters
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2z
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
-----------
.. [#] https://en.wikipedia.org/wiki/Two-port_network
"""
return z2a(a)
[docs]def z2a(z: npy.ndarray) -> npy.ndarray:
"""
Converts impedance parameters to abcd parameters [#]_.
Parameters
----------
z : :class:`numpy.ndarray` (shape fx2x2)
impedance parameter matrix
Returns
-------
abcd : npy.ndarray
scattering transfer parameters (aka wave cascading matrix)
See Also
--------
inv : calculates inverse s-parameters
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2z
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] https://en.wikipedia.org/wiki/Two-port_network
"""
abcd = npy.array([
[z[:, 0, 0] / z[:, 1, 0],
1. / z[:, 1, 0]],
[(z[:, 0, 0] * z[:, 1, 1] - z[:, 1, 0] * z[:, 0, 1]) / z[:, 1, 0],
z[:, 1, 1] / z[:, 1, 0]],
]).transpose()
return abcd
[docs]def s2a(s: npy.ndarray, z0: NumberLike = 50) -> npy.ndarray:
"""
Convert scattering parameters to abcd parameters [#]_.
Parameters
----------
s : :class:`numpy.ndarray` (shape `fx2x2`)
impedance parameter matrix
z0: number or, :class:`numpy.ndarray` (shape `fx2`)
port impedance
Returns
-------
abcd : npy.ndarray
scattering transfer parameters (aka wave cascading matrix)
References
----------
.. [#] https://en.wikipedia.org/wiki/Two-port_network
"""
nfreqs, nports, nports = s.shape
if nports != 2:
raise IndexError('abcd parameters are defined for 2-ports networks only')
z0 = fix_z0_shape(z0, nfreqs, nports)
z01 = z0[:,0]
z02 = z0[:,1]
denom = (2*s[:,1,0]*npy.sqrt(z01.real * z02.real))
a = npy.array([
[
((z01.conj() + s[:,0,0]*z01)*(1 - s[:,1,1]) + s[:,0,1]*s[:,1,0]*z01) / denom,
((1 - s[:,0,0])*(1 - s[:,1,1]) - s[:,0,1]*s[:,1,0]) / denom,
],
[
((z01.conj() + s[:,0,0]*z01)*(z02.conj() + s[:,1,1]*z02) - s[:,0,1]*s[:,1,0]*z01*z02) / denom,
((1 - s[:,0,0])*(z02.conj() + s[:,1,1]*z02) + s[:,0,1]*s[:,1,0]*z02) / denom,
],
]).transpose()
return a
[docs]def y2s(y: npy.ndarray, z0:NumberLike = 50, s_def: str = S_DEF_DEFAULT) -> Network:
r"""
Convert admittance parameters [#]_ to scattering parameters [#]_.
For power-waves, from [#Kurokawa]_:
.. math::
S = F (1 – G Y) (1 + G Y)^{-1} F^{-1}
where :math:`G = diag([Z_0])` and :math:`F = diag([1/2\sqrt{|Re(Z_0)|}])`
For pseudo-waves, Eq.(73) from [#Marks]_:
.. math::
S = U (Y^{-1} - G) (Y^{-1} + G)^{-1} U^{-1}
where :math:`U = \sqrt{Re(Z_0)}/|Z_0|`
Parameters
----------
y : complex array-like
admittance parameters
z0 : complex array-like or number
port impedances
s_def : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition : 'power' for power-waves definition [#Kurokawa]_,
'pseudo' for pseudo-waves definition [#Marks]_.
'traveling' corresponds to the initial implementation.
Default is 'power'.
Returns
-------
s : complex array-like or number
scattering parameters
See Also
--------
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2z
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/Admittance_parameters
.. [#] http://en.wikipedia.org/wiki/S-parameters
.. [#Kurokawa] Kurokawa, Kaneyuki "Power waves and the scattering matrix",
IEEE Transactions on Microwave Theory and Techniques, vol.13, iss.2, pp. 194–202, March 1965.
.. [#Marks] Marks, R. B. and Williams, D. F. "A general waveguide circuit theory",
Journal of Research of National Institute of Standard and Technology, vol.97, iss.5, pp. 533–562, 1992.
"""
nfreqs, nports, nports = y.shape
z0 = fix_z0_shape(z0, nfreqs, nports)
# Add a small real part in case of pure imaginary char impedance
# to prevent numerical errors for both pseudo and power waves definitions
z0 = z0.astype(dtype=complex)
z0[z0.real == 0] += ZERO
y = npy.array(y, dtype=complex)
# The following is a vectorized version of a for loop for all frequencies.
# Creating Identity matrices of shape (nports,nports) for each nfreqs
Id = npy.zeros_like(y) # (nfreqs, nports, nports)
npy.einsum('ijj->ij', Id)[...] = 1.0
if s_def == 'power':
# Creating diagonal matrices of shape (nports,nports) for each nfreqs
F, G = npy.zeros_like(y), npy.zeros_like(y)
npy.einsum('ijj->ij', F)[...] = 1.0/(2*npy.sqrt(z0.real))
npy.einsum('ijj->ij', G)[...] = z0
s = mf.rsolve(F @ (Id + G @ y), F @ (Id - npy.conjugate(G) @ y))
elif s_def == 'pseudo':
# Pseudo-waves
# Creating diagonal matrices of shape (nports,nports) for each nfreqs
ZR, U = npy.zeros_like(y), npy.zeros_like(y)
npy.einsum('ijj->ij', U)[...] = npy.sqrt(z0.real)/npy.abs(z0)
npy.einsum('ijj->ij', ZR)[...] = z0
# This formulation is not very good numerically
UY = mf.rsolve(mf.nudge_eig(y, cond=1e-12), U)
s = mf.rsolve(UY + U @ ZR, -2 * U @ ZR) + Id
elif s_def == 'traveling':
# Traveling-waves definition. Cf.Wikipedia "Impedance parameters" page.
# Creating diagonal matrices of shape (nports, nports) for each nfreqs
sqrtz0 = npy.zeros_like(y) # (nfreqs, nports, nports)
npy.einsum('ijj->ij', sqrtz0)[...] = npy.sqrt(z0)
s = mf.rsolve(Id + sqrtz0 @ y @ sqrtz0, Id - sqrtz0 @ y @ sqrtz0)
else:
raise ValueError(f'Unknown s_def: {s_def}')
return s
[docs]def y2z(y: npy.ndarray) -> npy.ndarray:
"""
Convert admittance parameters [#]_ to impedance parameters [#]_.
.. math::
z = y^{-1}
Parameters
----------
y : complex array-like
admittance parameters
Returns
-------
z : complex array-like
impedance parameters
See Also
--------
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2z
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/Admittance_parameters
.. [#] http://en.wikipedia.org/wiki/impedance_parameters
"""
return npy.linalg.inv(y)
[docs]def y2t(y: npy.ndarray) -> NoReturn:
"""
Not Implemented Yet.
Convert admittance parameters [#]_ to scattering-transfer parameters [#]_.
Parameters
----------
y : complex array-like or number
impedance parameters
Returns
-------
t : complex array-like or number
scattering parameters
See Also
--------
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2z
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/Admittance_parameters
.. [#] http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters
"""
raise (NotImplementedError)
[docs]def t2s(t: npy.ndarray) -> npy.ndarray:
"""
Converts scattering transfer parameters [#]_ to scattering parameters [#]_.
transfer parameters are also referred to as
'wave cascading matrix', this function only operates on 2N-ports
networks with same number of input and output ports, also known as
'balanced networks'.
Parameters
----------
t : :class:`numpy.ndarray` (shape fx2nx2n)
scattering transfer parameters
Returns
-------
s : :class:`numpy.ndarray`
scattering parameter matrix.
See Also
--------
inv : calculates inverse s-parameters
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2z
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
-----------
.. [#] http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters
.. [#] http://en.wikipedia.org/wiki/S-parameters
.. [#] Janusz A. Dobrowolski, "Scattering Parameter in RF and Microwave Circuit Analysis and Design",
Artech House, 2016, pp. 65-68
"""
z, y, x = t.shape
# test here for even number of ports.
# t-parameter networks are square matrix, so x and y are equal.
if(x % 2 != 0):
raise IndexError('Network does not have an even number of ports')
s = npy.zeros((z, y, x), dtype=complex)
yh = int(y/2)
xh = int(x/2)
# T_II,II^-1
tinv = npy.linalg.inv(t[:, yh:y, xh:x])
# np.linalg.inv test for singularity (matrix not invertible)
for k in range(len(s)):
# S_I,I = T_I,II . T_II,II^-1
s[k, 0:yh, 0:xh] = t[k, 0:yh, xh:x].dot(tinv[k])
# S_I,II = T_I,I - T_I,I,II . T_II,II^-1 . T_II,I
s[k, 0:yh, xh:x] = t[k, 0:yh, 0:xh]-t[k, 0:yh, xh:x].dot(tinv[k].dot(t[k, yh:y, 0:xh]))
# S_II,I = T_II,II^-1
s[k, yh:y, 0:xh] = tinv[k]
# S_II,II = -T_II,II^-1 . T_II,I
s[k, yh:y, xh:x] = -tinv[k].dot(t[k, yh:y, 0:xh])
return s
[docs]def t2z(t: npy.ndarray) -> NoReturn:
"""
Not Implemented Yet.
Convert scattering transfer parameters [#]_ to impedance parameters [#]_.
Parameters
----------
t : complex array-like or number
impedance parameters
Returns
-------
z : complex array-like or number
scattering parameters
See Also
--------
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2z
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters
.. [#] http://en.wikipedia.org/wiki/impedance_parameters
"""
raise (NotImplementedError)
[docs]def t2y(t: npy.ndarray) -> NoReturn:
"""
Not Implemented Yet.
Convert scattering transfer parameters to admittance parameters [#]_.
Parameters
----------
t : complex array-like or number
t-parameters
Returns
-------
y : complex array-like or number
admittance parameters
See Also
--------
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2z
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters
"""
raise (NotImplementedError)
[docs]def h2z(h: npy.ndarray) -> npy.ndarray:
"""
Convert hybrid parameters to z parameters [#]_.
Parameters
----------
h : :class:`numpy.ndarray` (shape fx2x2)
hybrid parameter matrix
Returns
-------
z : npy.ndarray
impedance parameters
See Also
--------
inv : calculates inverse s-parameters
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2z
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
-----------
.. [#] https://en.wikipedia.org/wiki/Two-port_network
"""
return z2h(h)
[docs]def h2s(h: npy.ndarray, z0: NumberLike = 50) -> npy.ndarray:
"""
Convert hybrid parameters to s parameters.
Parameters
----------
h : complex array-like
hybrid parameters
z0 : complex array-like or number
port impedances
Returns
-------
s : complex array-like
scattering parameters
"""
return z2s(h2z(h), z0)
[docs]def s2h(s: npy.ndarray, z0: NumberLike = 50) -> npy.ndarray:
"""
Convert scattering parameters [#]_ to hybrid parameters [#]_.
Parameters
----------
s : complex array-like
scattering parameters
z0 : complex array-like or number
port impedances.
Returns
-------
h : complex array-like
hybrid parameters
References
----------
.. [#] http://en.wikipedia.org/wiki/S-parameters
.. [#] http://en.wikipedia.org/wiki/Two-port_network#Hybrid_parameters_(h-parameters)
"""
return z2h(s2z(s, z0))
def z2h(z: npy.ndarray) -> npy.ndarray:
"""
Convert impedance parameters to hybrid parameters [#]_.
Parameters
----------
z : :class:`numpy.ndarray` (shape fx2x2)
impedance parameter matrix
Returns
-------
h : npy.ndarray
hybrid parameters
See Also
--------
inv : calculates inverse s-parameters
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2z
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
-----------
.. [#] https://en.wikipedia.org/wiki/Two-port_network
"""
h = npy.array([
[(z[:, 0, 0] * z[:, 1, 1] - z[:, 1, 0] * z[:, 0, 1]) / z[:, 1, 1],
-z[:, 1, 0] / z[:, 1, 1]],
[z[:, 0, 1] / z[:, 1, 1],
1. / z[:, 1, 1]],
]).transpose()
return h
## these methods are used in the secondary properties
[docs]def passivity(s: npy.ndarray) -> npy.ndarray:
r"""
Passivity metric for a multi-port network.
A metric which is proportional to the amount of power lost in a
multiport network, depending on the excitation port. Specifically,
this returns a matrix who's diagonals are equal to the total
power received at all ports, normalized to the power at a single
excitement port.
mathematically, this is a test for unitary-ness of the
s-parameter matrix [#]_.
for two port this is
.. math::
\sqrt( |S_{11}|^2 + |S_{21}|^2 \, , \, |S_{22}|^2+|S_{12}|^2)
in general it is
.. math::
\sqrt( S^H \cdot S)
where :math:`H` is conjugate transpose of S, and :math:`\cdot`
is dot product.
Note
----
The total amount of power dissipated in a network depends on the
port matches. For example, given a matched attenuator, this metric
will yield the attenuation value. However, if the attenuator is
cascaded with a mismatch, the power dissipated will not be equivalent
to the attenuator value, nor equal for each excitation port.
Returns
-------
passivity : :class:`numpy.ndarray` of shape fxnxn
References
------------
.. [#] http://en.wikipedia.org/wiki/Scattering_parameters#Lossless_networks
"""
if s.shape[-1] == 1:
raise (ValueError('Doesn\'t exist for one ports'))
pas_mat = s.copy()
for f in range(len(s)):
pas_mat[f, :, :] = npy.sqrt(npy.dot(s[f, :, :].conj().T, s[f, :, :]))
return pas_mat
[docs]def reciprocity(s: npy.ndarray) -> npy.ndarray:
"""
Reciprocity metric for a multi-port network.
This returns the magnitude of the difference between the
s-parameter matrix and its transpose.
for two port this is
.. math::
| S - S^T |
where :math:`T` is transpose of S
Parameters
----------
s : :class:`numpy.ndarray` of shape `fxnxn`
s-parameter matrix
Returns
-------
reciprocity : :class:`numpy.ndarray` of shape `fxnxn`
"""
if s.shape[-1] == 1:
raise (ValueError('Doesn\'t exist for one ports'))
rec_mat = s.copy()
for f in range(len(s)):
rec_mat[f, :, :] = abs(s[f, :, :] - s[f, :, :].T)
return rec_mat
## renormalize
[docs]def renormalize_s(
s: npy.ndarray, z_old: NumberLike, z_new: NumberLike,
s_def:str = S_DEF_DEFAULT, s_def_old: Union[str, None] = None
) -> npy.ndarray:
"""
Renormalize a s-parameter matrix given old and new port impedances.
Can be also used to convert between different S-parameter definitions.
Note
----
This re-normalization assumes power-wave formulation per default.
To use the pseudo-wave formulation, use s_def='pseudo'.
However, results should be the same for real-valued characteristic impedances.
See the [#Marks]_ and [#Anritsu]_ for more details.
Note
----
This just calls ::
z2s(s2z(s, z0=z_old, s_def=s_def_old), z0=z_new, s_def=s_def)
Parameters
----------
s : complex array of shape `fxnxn`
s-parameter matrix
z_old : complex array of shape `fxnxn` or a scalar
old (original) port impedances
z_new : complex array of shape `fxnxn` or a scalar
new port impedances
s_def : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition of the output network:
'power' for power-waves definition,
'pseudo' for pseudo-waves definition.
'traveling' corresponds to the initial implementation.
Default is 'power'.
s_def_old : str -> s_def : can be: None, 'power', 'pseudo' or 'traveling'
Scattering parameter definition of the input network:
None to copy s_def.
'power' for power-waves definition,
'pseudo' for pseudo-waves definition.
'traveling' corresponds to the initial implementation.
Returns
-------
:class:`numpy.ndarray`
renormalized s-parameter matrix (shape `fxnxn`)
See Also
--------
Network.renormalize : method of Network to renormalize s
fix_z0_shape
s2z
z2s
References
----------
.. [#Marks] R. B. Marks and D. F. Williams, "A general waveguide circuit theory,"
Journal of Research of the National Institute of Standards and Technology, vol. 97, no. 5, pp. 533-561, 1992.
.. [#Anritsu] Anritsu Application Note: Arbitrary Impedance,
https://web.archive.org/web/20200111134414/https://archive.eetasia.com/www.eetasia.com/ARTICLES/2002MAY/2002MAY02_AMD_ID_NTES_AN.PDF?SOURCES=DOWNLOAD
Examples
--------
>>> s = zeros(shape=(101,2,2))
>>> renormalize_s(s, 50,25)
"""
if s_def_old not in S_DEFINITIONS and s_def_old is not None:
raise ValueError('s_def_old parameter should be one of:', S_DEFINITIONS)
if s_def_old is None:
s_def_old = s_def
if s_def not in S_DEFINITIONS:
raise ValueError('s_def parameter should be one of:', S_DEFINITIONS)
# thats a heck of a one-liner!
return z2s(s2z(s, z0=z_old, s_def=s_def_old), z0=z_new, s_def=s_def)
def fix_param_shape(p: NumberLike):
"""
Attempt to broadcast p to satisfy.
npy.shape(p) == (nfreqs, nports, nports)
Parameters
----------
p : number, array-like
p can be:
* a number (one frequency, one port)
* 1D array-like (many frequencies, one port)
* 2D array-like (one frequency, many ports)
* 3D array-like (many frequencies, many ports)
Returns
-------
p : array of shape == (nfreqs, nports, nports)
p with the right shape for a nport Network
"""
# Ensure input is numpy array
p = npy.array(p, dtype=complex)
if len(p.shape) == 0:
# Scalar
return p.reshape(1, 1, 1)
if len(p.shape) == 1:
# One port with many frequencies
return p.reshape(p.shape[0], 1, 1)
if p.shape[-1] != p.shape[-2]:
raise ValueError('Input matrix must be square')
if len(p.shape) == 2:
# Many port with one frequency
return p.reshape(-1, p.shape[0], p.shape[0])
if len(p.shape) != 3:
raise ValueError('Input array has too many dimensions. Shape: {}' \
.format(p.shape))
return p
[docs]def fix_z0_shape(z0: NumberLike, nfreqs: int, nports: int) -> npy.ndarray:
"""
Make a port impedance of correct shape for a given network's matrix.
This attempts to broadcast z0 to satisfy
npy.shape(z0) == (nfreqs,nports)
Parameters
----------
z0 : number, array-like
z0 can be:
* a number (same at all ports and frequencies)
* an array-like of length == number ports.
* an array-like of length == number frequency points.
* the correct shape ==(nfreqs,nports)
nfreqs : int
number of frequency points
nports : int
number of ports
Returns
-------
z0 : array of shape ==(nfreqs,nports)
z0 with the right shape for a nport Network
Examples
--------
For a two-port network with 201 frequency points, possible uses may
be
>>> z0 = rf.fix_z0_shape(50 , 201,2)
>>> z0 = rf.fix_z0_shape([50,25] , 201,2)
>>> z0 = rf.fix_z0_shape(range(201) , 201,2)
"""
if npy.shape(z0) == (nfreqs, nports):
# z0 is of correct shape. super duper.return it quick.
return z0.copy()
elif npy.ndim(z0) == 0:
# z0 is a single number or npy.array without dimensions.
return npy.array(nfreqs * [nports * [z0]])
elif len(z0) == nports:
# assume z0 is a list of impedances for each port,
# but constant with frequency
return npy.array(nfreqs * [z0])
elif len(z0) == nfreqs:
# assume z0 is a list of impedances for each frequency,
# but constant with respect to ports
return npy.array(nports * [z0]).T
else:
raise IndexError('z0 is not an acceptable shape')
## cascading assistance functions
[docs]def inv(s: npy.ndarray) -> npy.ndarray:
"""
Calculate 'inverse' s-parameter matrix, used for de-embedding.
This is not literally the inverse of the s-parameter matrix.
Instead, it is defined such that the inverse of the s-matrix cascaded
with itself is a unity scattering transfer parameter (T) matrix.
.. math::
inv(s) = t2s({s2t(s)}^{-1})
where :math:`x^{-1}` is the matrix inverse. In words, this
is the inverse of the scattering transfer parameters matrix
transformed into a scattering parameters matrix.
Parameters
----------
s : :class:`numpy.ndarray` (shape fx2nx2n)
scattering parameter matrix.
Returns
-------
s' : :class:`numpy.ndarray`
inverse scattering parameter matrix.
See Also
--------
t2s : converts scattering transfer parameters to scattering parameters
s2t : converts scattering parameters to scattering transfer parameters
"""
# this idea is from lihan
t = s2t(s)
tinv = npy.linalg.inv(t)
sinv = t2s(tinv)
#for f in range(len(i)):
# i[f, :, :] = npy.linalg.inv(i[f, :, :]) # could also be written as
# # npy.mat(i[f,:,:])**-1 -- Trey
return sinv
[docs]def flip(a: npy.ndarray) -> npy.ndarray:
"""
Invert the ports of a networks s-matrix, 'flipping' it over left and right.
In case the network is 2n-port and n > 1, 'second' numbering scheme is
assumed to be consistent with the ** cascade operator::
+--------+ +--------+
0-|0 n|-n 0-|n 0|-n
1-|1 n+1|-n+1 flip 1-|n+1 1|-n+1
... ... => ... ...
n-1-|n-1 2n-1|-2n-1 n-1-|2n-1 n-1|-2n-1
+--------+ +--------+
Parameters
----------
a : :class:`numpy.ndarray`
scattering parameter matrix. shape should be should be `2nx2n`, or
`fx2nx2n`
Returns
-------
c : :class:`numpy.ndarray`
flipped scattering parameter matrix
See Also
--------
renumber
"""
c = a.copy()
n2 = a.shape[-1]
m2 = a.shape[-2]
n = int(n2/2)
if (n2 == m2) and (n2 % 2 == 0):
old = list(range(0,2*n))
new = list(range(n,2*n)) + list(range(0,n))
if(len(a.shape) == 2):
c[new, :] = c[old, :] # renumber rows
c[:, new] = c[:, old] # renumber columns
else:
c[:, new, :] = c[:, old, :] # renumber rows
c[:, :, new] = c[:, :, old] # renumber columns
else:
raise IndexError('matrices should be 2nx2n, or kx2nx2n')
return c
## COMMON CHECKS (raise exceptions)
def check_frequency_equal(ntwkA: Network, ntwkB: Network) -> None:
"""
Check if two Networks have same frequency.
"""
if assert_frequency_equal(ntwkA, ntwkB) is False:
raise IndexError('Networks don\'t have matching frequency. See `Network.interpolate`')
def check_frequency_exist(ntwk) -> None:
"""
Check if a Network has a non-zero Frequency.
"""
if assert_frequency_exist(ntwk) is False:
raise ValueError('Network has no Frequency. Frequency points must be defined.')
def check_z0_equal(ntwkA: Network, ntwkB: Network) -> None:
"""
Check if two Networks have same port impedances.
"""
# note you should check frequency equal before you call this
if assert_z0_equal(ntwkA, ntwkB) is False:
raise ValueError('Networks don\'t have matching z0.')
def check_nports_equal(ntwkA: Network, ntwkB: Network) -> None:
"""
Check if two Networks have same number of ports.
"""
if assert_nports_equal(ntwkA, ntwkB) is False:
raise ValueError('Networks don\'t have matching number of ports.')
## TESTs (return [usually boolean] values)
def assert_frequency_equal(ntwkA: Network, ntwkB: Network) -> bool:
"""
"""
return (ntwkA.frequency == ntwkB.frequency)
def assert_frequency_exist(ntwk: Network) -> bool:
"""
Test if the Network Frequency is defined.
Returns
-------
bool: boolean
"""
return bool(len(ntwk.frequency))
def assert_z0_equal(ntwkA: Network, ntwkB: Network) -> bool:
"""
"""
return (ntwkA.z0 == ntwkB.z0).all()
def assert_z0_at_ports_equal(ntwkA: Network, k: int, ntwkB: Network, l: int) -> bool:
"""
"""
return (ntwkA.z0[:, k] == ntwkB.z0[:, l]).all()
def assert_nports_equal(ntwkA: Network, ntwkB: Network) -> bool:
"""
"""
return (ntwkA.number_of_ports == ntwkB.number_of_ports)
## Other
# don't belong here, but i needed them quickly
# this is needed for port impedance mismatches
def impedance_mismatch(z1: NumberLike, z2: NumberLike, s_def: str = 'traveling') -> npy.ndarray:
"""
Create a two-port s-matrix for a impedance mis-match.
Parameters
----------
z1 : number or array-like
complex impedance of port 1
z2 : number or array-like
complex impedance of port 2
s_def : str, optional. Default is 'traveling'.
Scattering parameter definition:
'power' for power-waves definition,
'pseudo' for pseudo-waves definition.
'traveling' corresponds to the initial implementation.
NB: results are the same for real-valued characteristic impedances.
Returns
-------
s' : 2-port s-matrix for the impedance mis-match
References
----------
.. [#] R. B. Marks et D. F. Williams, A general waveguide circuit theory,
J. RES. NATL. INST. STAN., vol. 97, no. 5, p. 533, sept. 1992.
"""
from .tlineFunctions import zl_2_Gamma0
gamma = zl_2_Gamma0(z1, z2)
result = npy.zeros(shape=(len(gamma), 2, 2), dtype='complex')
if s_def == 'traveling':
result[:, 0, 0] = gamma
result[:, 1, 1] = -gamma
result[:, 1, 0] = (1 + gamma) * npy.sqrt(1.0 * z1 / z2)
result[:, 0, 1] = (1 - gamma) * npy.sqrt(1.0 * z2 / z1)
elif s_def == 'pseudo':
n = npy.abs(z2/z1) * npy.sqrt(z1.real / z2.real)
result[:, 0, 0] = gamma
result[:, 1, 1] = -gamma
result[:, 1, 0] = 2 * z2 / (n * (z1 + z2))
result[:, 0, 1] = 2 * z1 * n / (z1 + z2)
elif s_def == 'power':
n = npy.sqrt(z1.real / z2.real)
result[:, 0, 0] = (z2 - z1.conjugate()) / (z1 + z2)
result[:, 1, 1] = (z1 - z2.conjugate()) / (z1 + z2)
result[:, 1, 0] = (2 * z1.real) / (n * (z1 + z2))
result[:, 0, 1] = (2 * z2.real) * n / (z1 + z2)
else:
raise ValueError(f'Unsupported s_def: {s_def}')
return result
[docs]def two_port_reflect(ntwk1: Network, ntwk2: Network = None, name : Optional[str] = None) -> Network:
"""
Generate a two-port reflective two-port, from two one-ports.
Parameters
----------
ntwk1 : one-port Network object
network seen from port 1
ntwk2 : one-port Network object, or None
network seen from port 2. if None then will use ntwk1.
name: Name for the combined network. If None, then construct the name
from the names of the input networks
Returns
-------
result : Network object
two-port reflective network
Note
----
The resultant Network is copied from `ntwk1`, so its various
properties(name, frequency, etc) are inherited from that Network.
Examples
--------
>>> short,open = rf.Network('short.s1p', rf.Network('open.s1p')
>>> rf.two_port_reflect(short,open)
"""
result = ntwk1.copy()
if ntwk2 is None:
ntwk2 = ntwk1
s11 = ntwk1.s[:, 0, 0]
s22 = ntwk2.s[:, 0, 0]
s21 = npy.zeros(ntwk1.frequency.npoints, dtype=complex)
result.s = npy.array( \
[[s11, s21], \
[s21, s22]]). \
transpose().reshape(-1, 2, 2)
result.z0 = npy.hstack([ntwk1.z0, ntwk2.z0])
if name is None:
try:
result.name = ntwk1.name + '-' + ntwk2.name
except(TypeError):
pass
else:
result.name = name
return result
def s2s_active(s: npy.ndarray, a:npy.ndarray) -> npy.ndarray:
r"""
Return active s-parameters for a defined wave excitation a.
The active s-parameter at a port is the reflection coefficients
when other ports are excited. It is an important quantity for active
phased array antennas.
Active s-parameters are defined by [#]_:
.. math::
\mathrm{active}(s)_{m} = \sum_{i=1}^N\left( s_{mi} a_i \right) / a_m
where :math:`s` are the scattering parameters and :math:`N` the number of ports
Parameters
----------
s : complex array
scattering parameters (nfreqs, nports, nports)
a : complex array of shape (n_ports)
forward wave complex amplitude (pseudowave formulation [#]_)
Returns
-------
s_act : complex array of shape (n_freqs, n_ports)
active S-parameters for the excitation a
See Also
--------
s2z_active : active Z-parameters
s2y_active : active Y-parameters
s2vswr_active : active VSWR
References
----------
.. [#] D. M. Pozar, IEEE Trans. Antennas Propag. 42, 1176 (1994).
.. [#] D. Williams, IEEE Microw. Mag. 14, 38 (2013).
"""
a = npy.asarray(a, dtype=complex)
a[a == 0] = 1e-12 # solve numerical singularity
s_act = npy.einsum('fmi,i,m->fm', s, a, npy.reciprocal(a))
return s_act # shape : (n_freqs, n_ports)
def s2z_active(s: npy.ndarray, z0: NumberLike, a: npy.ndarray) -> npy.ndarray:
r"""
Return the active Z-parameters for a defined wave excitation a.
The active Z-parameters are defined by:
.. math::
\mathrm{active}(z)_{m} = z_{0,m} \frac{1 + \mathrm{active}(s)_m}{1 - \mathrm{active}(s)_m}
where :math:`z_{0,m}` is the characteristic impedance and
:math:`\mathrm{active}(s)_m` the active S-parameter of port :math:`m`.
Parameters
----------
s : complex array
scattering parameters (nfreqs, nports, nports)
z0 : complex array-like or number
port impedances.
a : complex array of shape (n_ports)
forward wave complex amplitude
Returns
-------
z_act : complex array of shape (nfreqs, nports)
active Z-parameters for the excitation a
See Also
--------
s2s_active : active S-parameters
s2y_active : active Y-parameters
s2vswr_active : active VSWR
"""
# TODO : vectorize the for loop
nfreqs, nports, nports = s.shape
z0 = fix_z0_shape(z0, nfreqs, nports)
s_act = s2s_active(s, a)
z_act = npy.einsum('fp,fp,fp->fp', z0, 1 + s_act, npy.reciprocal(1 - s_act))
return z_act
def s2y_active(s: npy.ndarray, z0: NumberLike, a: npy.ndarray) -> npy.ndarray:
r"""
Return the active Y-parameters for a defined wave excitation a.
The active Y-parameters are defined by:
.. math::
\mathrm{active}(y)_{m} = y_{0,m} \frac{1 - \mathrm{active}(s)_m}{1 + \mathrm{active}(s)_m}
where :math:`y_{0,m}` is the characteristic admittance and
:math:`\mathrm{active}(s)_m` the active S-parameter of port :math:`m`.
Parameters
----------
s : complex array
scattering parameters (nfreqs, nports, nports)
z0 : complex array-like or number
port impedances.
a : complex array of shape (n_ports)
forward wave complex amplitude
Returns
-------
y_act : complex array of shape (nfreqs, nports)
active Y-parameters for the excitation a
See Also
--------
s2s_active : active S-parameters
s2z_active : active Z-parameters
s2vswr_active : active VSWR
"""
nfreqs, nports, nports = s.shape
z0 = fix_z0_shape(z0, nfreqs, nports)
s_act = s2s_active(s, a)
y_act = npy.einsum('fp,fp,fp->fp', npy.reciprocal(z0), 1 - s_act, npy.reciprocal(1 + s_act))
return y_act
def s2vswr_active(s: npy.ndarray, a: npy.ndarray) -> npy.ndarray:
r"""
Return the active VSWR for a defined wave excitation a..
The active VSWR is defined by :
.. math::
\mathrm{active}(vswr)_{m} = \frac{1 + |\mathrm{active}(s)_m|}{1 - |\mathrm{active}(s)_m|}
where :math:`\mathrm{active}(s)_m` the active S-parameter of port :math:`m`.
Parameters
----------
s : complex array
scattering parameters (nfreqs, nports, nports)
a : complex array of shape (n_ports)
forward wave complex amplitude
Returns
-------
vswr_act : complex array of shape (nfreqs, nports)
active VSWR for the excitation a
See Also
--------
s2s_active : active S-parameters
s2z_active : active Z-parameters
s2y_active : active Y-parameters
"""
s_act = s2s_active(s, a)
vswr_act = npy.einsum('fp,fp->fp', (1 + npy.abs(s_act)), npy.reciprocal(1 - npy.abs(s_act)))
return vswr_act
def twoport_to_nport(ntwk, port1, port2, nports, **kwargs):
r"""
Add ports to two-port. S-parameters of added ports are all zeros.
Parameters
----------
ntwk : Two-port Network object
port1: int
First port of the two-port in the resulting N-port.
port2: int
Second port of the two-port in the resulting N-port.
nports: int
Number of ports in the N-port network.
\*\*kwargs:
Passed to :func:`Network.__init__` for resultant network.
Returns
-------
nport: N-port Network object
"""
fpoints = len(ntwk.frequency)
nport = Network(frequency=ntwk.frequency,
s=npy.zeros(shape=(fpoints, nports, nports)),
name=ntwk.name,
**kwargs)
nport.s[:,port1,port1] = ntwk.s[:,0,0]
nport.s[:,port2,port1] = ntwk.s[:,1,0]
nport.s[:,port1,port2] = ntwk.s[:,0,1]
nport.s[:,port2,port2] = ntwk.s[:,1,1]
nport.z0[:,port1] = ntwk.z0[:,0]
nport.z0[:,port2] = ntwk.z0[:,1]
return nport